Return to search

Characterization of the hepatitis C virus NS5b RNA-dependent RNA polymerase: novel inhibitors and antiviral resistance

The hepatitis C virus polymerase NS5b is required for replication of the viral genome, making it an attractive target for antiviral development. The polymerase contains no proof-reading activity and generates viral variants during replication with a high degree of genetic heterogeneity, complicating the development of effective antiviral therapies since resistance mutations are readily selected under drug pressure. A successful treatment regimen will likely require a combination therapy that can suppress the emergence of resistance. Here, we have described the mechanism of action of a novel class of polymerase active site inhibitors, pyrophosphate analogues. We studied interactions between these compounds and NS5b in the presence of the resistance mutations G152E and P156L and have identified interactions leading to resistance. Additionally, we have combined the pyrophosphate analogues with a second class of polymerase active site inhibitors, nucleoside analogue inhibitors (NIs). We found that the combination can interfere with excision, a potential mechanism of resistance to NIs. We have also examined fidelity of the polymerase to better understand its contribution to variability in the viral genome. Our biochemical findings suggest that the efficiency of nucleotide mismatch formation during replication influences the prevalence of resistance mutations within the viral quasispecies population. This is supported by deep-sequencing data from an HCV-infected patient cohort. Based on these findings, we have developed a mathematical model showing that combining inhibitors selecting for resistance mutations generated through difficult-to-form nucleotide mismatches could delay the onset of resistance.We extended this study by performing transient kinetic assays to characterize incorporation of NIs by NS5b and compared this to the efficiency of mismatched nucleotide incorporation. These studies demonstrate that current NIs incorporate more efficiently than mismatched nucleotides. The incorporation efficiency of the guanosine analogue ribavirin was low as compared to other NIs tested and also as compared to G:U and U:G mismatches examined in our fidelity study, suggesting its incorporation during RNA synthesis does not cause error catastrophe. Overall, these studies provide a greater understanding of the mechanism of action of polymerase inhibitors, and of the role of the polymerase in the development of antiviral resistance. / La polymérase NS5b du virus de l'hépatite C est nécessaire pour la réplication du génome viral et représente donc une cible importante pour la découverte et le développement de nouveaux médicaments. La polymérase contient aucune activité de relecture et génère des variantes du virus avec un haut degré d'hétérogénéité génétique lors de sa réplication. Ceci nuit au développement de traitements antiviraux efficaces puisque les mutations de résistance sont facilement sélectionnées sous pression de médicaments. Un traitement efficace exigera probablement une combinaison thérapeutique qui pourrait empêcher la résistance. Ici, nous avons décrit le mécanisme d'action d'une nouvelle classe d'inhibiteurs du site actif de la polymérase, les analogues du pyrophosphate. Nous avons étudié les interactions entre ces inhibiteurs et NS5b, en présence des mutations de résistance G152E et P156L en plus d'identifier des interactions conduisant à la résistance. De plus, nous avons combiné les analogues du pyrophosphate avec une deuxième classe d'inhibiteurs du site actif de la polymérase, les inhibiteurs nucléotidiques (INs). Nous avons constaté que la combinaison peut interférer avec l'excision, un mécanisme potentiel de résistance aux INs. Nous avons également examiné la fidélité de la polymérase pour mieux comprendre sa contribution à la variabilité du génome viral. Nos résultats biochimiques suggèrent que l'efficacité de la formation de décalage lors de la réplication influence la prévalence des mutations de résistance au sein de la population virale quasi-espèces. Ceci est soutenu par les données obtenues suite au séquençage à très haut débit d'une cohorte de patients infectés par le VHC. Basé sur ces résultats, nous avons développé un modèle mathématique démontrant que la combinaison d'inhibiteurs qui sélectionnent des mutations de résistance générées par des mésappariements nucléotidiques difficiles à former pourrait retarder l'apparition de la résistance. Nous avons poursuivi cette étude en caractérisant l'incorporation des INs par NS5b et en comparant cela à l'efficacité de l'incorporation de nucléotides dépareillés. Ces études démontrent que les INs actuelles sont incorporées avec plus d'efficacité que les nucléotides dépareillés. L'efficacité d'incorporation de l'analogue ribavirine était faible par rapport aux autres INs testés et aussi par rapport aux mésappariements G: U et U: G examinés dans notre étude de fidélité. Ceci suggère que l'incorporation de la ribavirine lors de la synthèse d'ARN ne provoque pas d'erreur catastrophique. Globalement, ces études nous mènent à une meilleure compréhension du mécanisme d'action des inhibiteurs de la polymérase NS5b, et du rôle de la polymérase dans le développement de la résistance aux antiviraux.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.107791
Date January 2012
CreatorsPowdrill, Megan
ContributorsMatthias Gotte (Supervisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Microbiology & Immunology)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
RelationElectronically-submitted theses.

Page generated in 0.0019 seconds