Return to search

Fluorescent nanocrystals for bioimaging

Optical imaging based on fluorescence has yet to be introduced as a clinical diagnostic tool due to the lack of reliable, photostable, and highly luminescent fluorophores. Fluorescent nanocrystals, or quantum dots (QDs), are promising alternatives to organic dyes, since QDs are small in size, resistant to photo-bleaching, and have excellent and appropriate optical properties. The main objective of this work is to use QDs for real-time imaging in live animals. Widespread use of QDs in biology is currently limited due to their questionable biocompatibility, and to the fact that some nanocrystals contain heavy metals, which are potentially hazardous, in their cores. In the present studies the mechanisms underlying the toxicity of cadmium telluride QDs was investigated in several stable cell lines. After long-term exposure to QDs, significant morphological and functional changes were observed at the cellular and subcellular levels. We showed that QD-induced toxicity includes the production of reactive oxygen species, peroxidation of membrane lipids, impairment of mitochondrial function, and changes in the genome and epigenome. Understanding how toxic QDs cause damage to the cells is a first step for i) the establishment of protocols to evaluate the safety of other nanomaterials, and ii) the development of new or improved nanocrystals that are non-toxic. We showed that modifications on QD surfaces with small drug molecules (e.g. N-acetylcysteine) or synthetic polymers can significantly decrease their toxicity, and in some cases, even render the QDs non-toxic. Utilizing a non-invasive route (i.e. intranasal) to deliver nano-probes and nano-therapeutics to the brain, we demonstrated the use of near-infrared fluorescence of non-toxic QDs to image cerebral microlesions in live animals. Repeated imaging in vivo allowed for the live monitoring of lesion size in animals; a reduction of lesion size is a measure of the effectiveness of nano-therapeutic interventions. Animals treated with micelle-incorporated nimodipine or minocycline had significantly smaller lesion volumes, and displayed better recovery of motor function. Quantitative evaluation and volume calculations were possible since the QD signal was isolated from autofluorescence and background after fluorescence lifetime gating. Taken together, the results from this work contribute to the development of QDs and fluorescence technology for biomedical imaging in two main ways: 1) by presenting in vitro measures as the first step in the evaluation of nanomaterial safety. 2) by demonstrating the advantages of using near-infrared QDs for non-invasive lifetime imaging in animals with unilateral cortical ischemic microlesions and for the determination of the spatio-temporal reduction of lesions upon nano-therapeutic interventions. These findings support the use of carefully designed and rigorously tested fluorescent QDs for lifetime optical imaging of the brain in experimental animals, and eventually extending to clinical studies. / L'imagerie par fluorescence reste à introduire dans les cabinets médicaux en raison du manque de fluorophores photo-stables, à haute intensité lumineuse, disponibles sur le marché. Les nanocristaux fluorescents ou boîtes quantiques (BQ), représentent une alternative intéressante par rapport aux teintures organiques car les BQ sont très petits, résistants au photoblanchiment et ont d'excellentes propriétés optiques. L'objectif principal de cette étude est d'utiliser les BQ pour une imagerie en temps réel sur les animaux vivants. L'usage étendu des BQ en biologie est limité en raison de leur biocompatibilité discutable et également en raison du fait que quelques nanocristaux sont composés en partie de métaux lourds. Dans cette étude, les mécanismes cellulaires impliquant la toxicité des BQ de cadmium telluride sont examinés. Après une exposition prolongée aux BQ, des modifications morphologiques et fonctionnelles significatives ont été observées à l'échelle cellulaire et infracellulaire. Nous démontrons que la toxicité induite par les BQ peut entrainer la production d'espèces réactives de l'oxygène, la peroxydation des lipides de la membrane biologique, l'altération du fonctionnement mitochondrial mais aussi des changements du génome et de l'épigénome. Comprendre comment les BQ toxiques endommagent les cellules est un premier pas dans l'établissement de protocoles d'évaluation de la sécurité des nanomatériaux et dans le développement de nouveau nanocristaux non-toxiques. Nous démontrons que la modification de la surface des BQ grâce à des médicaments (ex : N-acetylcysteine) ou des polymères synthétiques peut grandement diminuer leur toxicité, et dans quelques cas, peut aussi rendre les BQ non-toxiques. En utilisant de tel BQ non-toxiques, nous effectuons une démonstration de l'utilisation de la fluorescence infrarouge proche pour effectuer des clichés en temps réel de microlésions cérébrales sur des animaux vivants, à l'aide de méthodes non effractives (ex : voie intra-nasale) pour insérer des nano-sondes ou administrer des nano-thérapies au niveau du cerveau. Des imageries répétées permettent de surveiller la taille des lésions sur les animaux, et prouvent l'efficacité des nano-thérapies dans la prévention de l'expansion de la lésion. Les animaux traités par micelles chargées de nimodipine ou de minocycline ont des lésions moins volumineuses et une meilleure récupération de la fonction motrice. Une évaluation quantitative et un calcul de volume ont été possibles car le signal BQ était séparé de l'autofluorescence tissulaire grâce à de la synchronisation d'image fondé sur la durée de vie fluorescence. L'ensemble des résultats de ces études contribue au développement des BQ et des technologies par fluorescence en imagerie biomédicale, et ceci de deux façons : 1) en présentant des résultats in vitro qui constituent une première étape dans l'évaluation de la sécurité des nanomatériaux. 2) en démontrant des avantages de l'utilisation les BQ infrarouges proches pour l'imagerie non effractives sur les animaux vivants avec des lésions cérébrales et pour la détermination de la réduction des lésions après des nano-thérapies. Ces constatations appuient l'utilisation des BQ fluorescentes créés avec soin et ayant subi des essais précliniques rigoureux pour l'imagerie encéphalique in vivo et s'étendant finalement aux études cliniques.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.114126
Date January 2013
CreatorsChoi, Angela On Ki
ContributorsDusica Maysinger (Supervisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Pharmacology & Therapeutics)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
RelationElectronically-submitted theses.

Page generated in 0.0022 seconds