This thesis presents the development and implementation of a quantitative multi-slice cerebral perfusion imaging technique using magnetic resonance imaging. An acquisition sequence capable of acquiring up to 9 slices was designed and implemented into two final pulse sequences: an interleaved perfusion/BOLD (blood oxygenation level dependent) sequence and a perfusion-only sequence. A number of practical imaging issues were addressed and resolved, including the design of an appropriate inversion pulse for labelling of arterial spins, spatial offsetting of this pulse for use in the arterial spin labelling technique chosen for implementation, and the design of various saturation pulses necessary for quantification of the technique. Experimental validation of the quantitative multi-slice perfusion technique was performed by measuring visual cortex cerebral blood flow (CBF) values in a group of 8 subjects using a block-design visual stimulus paradigm. Results indicated good sequence stability and CBF measurements agreed well with quantitative values found in the literature.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.33821 |
Date | January 2001 |
Creators | Petric, Martin Peter. |
Contributors | Pike, G. Bruce (advisor) |
Publisher | McGill University |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Format | application/pdf |
Coverage | Master of Science (Department of Medical Radiation Physics.) |
Rights | All items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated. |
Relation | alephsysno: 001863557, proquestno: MQ78938, Theses scanned by UMI/ProQuest. |
Page generated in 0.002 seconds