Liquid ionization chambers have characteristics that can remedy some of the drawbacks of air-filled ionization chamber dosimetry: large sensitive volumes, fluence perturbations, and energy dependence. However, high ion recombination rates can be a significant problem in liquid chambers. In this work, we have investigated properties of a new liquid chamber, called the GLIC-03 (Guarded Liquid Ionization Chamber), including chamber stability, reproducibility, and establishing recombination corrections. The response varied by less than 1% over 10 hours, and was reproducible within 1.5% of the mean over different liquid fills. Recombination corrections were established, and were small for low dose rates and high voltages. The establishment of these characteristics allowed us to compare measurements of the GLIC-03 in a region of charged particle disequilibrium to those made with a diamond detector. Results show the GLIC-03's suitability as a high resolution detector.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.101120 |
Date | January 2006 |
Creators | Elliott, Adam S. |
Publisher | McGill University |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Format | application/pdf |
Coverage | Master of Science (Department of Medical Radiation Physics.) |
Rights | © Adam S. Elliott, 2006 |
Relation | alephsysno: 002586690, proquestno: AAIMR32699, Theses scanned by UMI/ProQuest. |
Page generated in 0.0017 seconds