Return to search

The mitogenic effect of radix ophiopogonis and radix astragali on neonatal primary rat cardiomyocytes and differentiated H9C2 cardiac cells.

Law Sui-Lin. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2003. / Includes bibliographical references (leaves 99-109). / Abstracts in English and Chinese. / CONTENTS --- p.i / ABSTRACT --- p.v / 撮要 --- p.vii / ACKNOWLEDGEMENTS --- p.ix / LIST OF FIGURES & TABLES --- p.xi / ABBREVIATIONS --- p.xv / Chapter Chapter 1 --- INTRODUCTION --- p.1 / Chapter 1.1 --- The Transition of Hyperplastic to Hypertrophic Growth During Heart Development --- p.1 / Chapter 1.2 --- The Controversial Capability of Heart Regeneration --- p.3 / Chapter 1.3 --- Challenges in Treating Heart Diseases --- p.5 / Chapter 1.4 --- A New Insight Behind Traditional Chinese Medicine (TCM) for Treating Heart Diseases --- p.7 / Chapter 1.5 --- The Potential Mitogenic TCMs on Cardiomyocytes --- p.10 / Chapter 1.5.1 --- Radix Astragali --- p.11 / Chapter 1.5.2 --- Radix Ophiopogonis --- p.12 / Chapter Chapter 2 --- MATERIALS & METHODS --- p.14 / Chapter 2.1 --- Materials --- p.14 / Chapter 2.2 --- Cell Culture --- p.16 / Chapter 2.2.1 --- Primary neonatal rat cardiomyocytes cell culture --- p.16 / Chapter 2.2.1.1 --- Mayer's hemalum-eosin staining --- p.17 / Chapter 2.2.2 --- Primary rat fibroblasts cell culture --- p.18 / Chapter 2.2.3 --- H9C2 cardiac cell culture --- p.18 / Chapter 2.3 --- TCMs Preparation and Treatment --- p.19 / Chapter 2.3.1 --- Preparation of TCMs powder from aqueous extracts --- p.19 / Chapter 2.3.2 --- Preparation of culture medium with TCMs powder --- p.19 / Chapter 2.3.3 --- Pre-treatment of undifferentiated and differentiated H9C2 cardiac cells with TCMs --- p.20 / Chapter 2.3.4 --- Post-treatment of differentiated H9C2 cardiac cells with TCMs --- p.20 / Chapter 2.4 --- Assessment of DNA Synthesis and Proliferation --- p.21 / Chapter 2.4.1 --- Tritiated thymidine incorporation assay --- p.21 / Chapter 2.4.2 --- 5-Bromo-2'-deoxy-uridine (BrdU) assay --- p.22 / Chapter 2.4.3 --- Cell counting --- p.23 / Chapter 2.4.4 --- Statistical analysis --- p.23 / Chapter 2.5 --- Screening of Differentially Expressed Genes in H9C2 Cells after TCM Treatment by cDNA Microarray --- p.25 / Chapter 2.5.1 --- Total RNA extraction --- p.25 / Chapter 2.5.2 --- RNA labeling --- p.26 / Chapter 2.5.2.1 --- Synthesis of fluorescence labeled probe --- p.26 / Chapter 2.5.2.2 --- Purification of fluorescence labeled probe --- p.27 / Chapter 2.5.3 --- Microarray hybridization --- p.28 / Chapter 2.5.3.1 --- Concentration of fluorescence labeled probe --- p.28 / Chapter 2.5.3.2 --- Hybridization --- p.28 / Chapter 2.5.3.3 --- Post-hybridization treatment --- p.29 / Chapter 2.5.4 --- Data collection --- p.29 / Chapter 2.5.4.1 --- Scanning of slide --- p.29 / Chapter 2.5.4.2 --- Image processing: spots finding and quantification --- p.30 / Chapter 2.5.5 --- Data normalization and analysis --- p.30 / Chapter 2.6 --- Confirmation of Differentially Expressed Genes in H9C2 Cells after TCM Treatment by RT-PCR --- p.32 / Chapter 2.6.1 --- DNase I digestion of total RNA sample --- p.32 / Chapter 2.6.2 --- First-strand cDNA synthesis --- p.32 / Chapter 2.6.3 --- RT-PCR of the candidate genes --- p.33 / Chapter Chapter 3 --- RESULTS --- p.36 / Chapter 3.1 --- Neonatal Primary Rat Cardiomyocytes --- p.36 / Chapter 3.1.1 --- Preparation of high-purity neonatal primary rat cardiomyocytes --- p.36 / Chapter 3.1.2 --- Neonatal primary rat cardiomyocytes ceased to undergo DNA replication after 6-day in vitro culturing --- p.38 / Chapter 3.1.3 --- Both MD and HQ promoted the growth of day 1 primary rat cardiomyocytes in dose- and time-dependent manners --- p.40 / Chapter 3.1.4 --- HQ is more potent than MD in promoting the growth of day 7 primary rat cardiomyocytes --- p.43 / Chapter 3.2 --- H9C2 Cardiac cells --- p.45 / Chapter 3.2.1 --- Proliferative effect of MD and HQ on undifferentiated H9C2 cardiac cells --- p.45 / Chapter 3.2.2 --- Pre-treatment of HQ on H9C2 cardiac cells during differentiation --- p.50 / Chapter 3.2.3 --- Pre-treatment of MD and HQ on differentiated H9C2 cardiac cells --- p.52 / Chapter 3.2.4 --- Post-treatment of MD on differentiated H9C2 cardiac cells…… --- p.55 / Chapter 3.3 --- Primary Rat Fibroblasts --- p.57 / Chapter 3.3.1 --- Proliferative effect of MD and HQ on primary rat fibroblasts --- p.58 / Chapter 3.4 --- Screening of Differentially Expressed Genes in H9C2 Cells after HQ Treatment by cDNA Microarray --- p.60 / Chapter 3.4.1 --- Differentially expressed genes in undifferentiated H9C2 cardiac cells after HQ treatment --- p.60 / Chapter 3.4.2 --- Differentially expressed genes in differentiated H9C2 cardiac cells after HQ treatment --- p.66 / Chapter 3.4.3 --- Comparison of differentially expressed genes in both undifferentiated and differentiated H9C2 cardiac cells after HQ treatment --- p.72 / Chapter 3.5 --- Confirmation of Differentially Expressed Genes in H9C2 Cells after HQ Treatment by RT-PCR --- p.73 / Chapter 3.5.1 --- "Preferential up-regulation of N-G, N-G-dimethylarginine dimethylaminohydrolase mRNA expression level in undifferentiated H9C2 cardiac cells after HQ treatment " --- p.74 / Chapter 3.5.2 --- Preferential up-regulation of heme oxygenase-3 mRNA expression level in undifferentiated H9C2 cardiac cells after HQ treatment --- p.75 / Chapter 3.5.3 --- Preferential up-regulation of cyclin B mRNA expression level in differentiated H9C2 cardiac cells after HQ treatment --- p.76 / Chapter Chapter 4 --- DISCUSSION --- p.77 / Chapter 4.1 --- HQ Being a More Effective Mitogenic TCM than MD on Cardiomyocytes Exerted its Effect in Dose- and Time Dependent --- p.79 / Chapter 4.2 --- Mitogenic Effect of Both MD and HQ might Possibly Due to the Regulation of Intrinsic Factors --- p.82 / Chapter 4.3 --- HQ Rather Than MD Showed a Higher Specificity in Promoting DNA Synthesis in Cardiomyocytes --- p.83 / Chapter 4.4 --- The Differentially Expressed Genes were Supported by The Clinical Functions of HQ --- p.85 / Chapter 4.5 --- Relating the Differentially Expressed Genes with Cardiac Growth and Development --- p.87 / Chapter 4.6 --- The Hypothetic Mechanisms of Action that HQ Exerted on Cardiac Growth and Development --- p.92 / Chapter 4.7 --- Future Prospect --- p.94 / Chapter 4.7.1 --- In vivo study of HQ on the proliferation of rat cardiomyocytes from neonatal to postnatal development --- p.94 / Chapter 4.7.2 --- The study of transgenic mice carrying the target gene regulated by HQ on cardiac growth and development --- p.96 / Chapter 4.7.3 --- The determination of active component of HQ on cardiac growth and development --- p.97 / REFERENCES --- p.99 / APPENDIX --- p.110

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_324436
Date January 2003
ContributorsLaw, Sui-Lin., Chinese University of Hong Kong Graduate School. Division of Biochemistry.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xvii, 111 leaves : ill. (some col.) ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.003 seconds