La connaissance des champs de flux thermique sur les composants d’un tokamak estun élément important de la conception de ce type de machines. L’objectif de cette thèse est dedévelopper et mettre en œuvre une méthode de calcul de ces flux à partir des mesures detempérature par thermographie infrarouge. Ce travail repose sur trois objectifs qui concernentles tokamaks actuels et futurs (ITER) : mesurer un champ de température d'une paroiréfléchissante par pyrométrie photothermique (pré-étude), caractériser les propriétésthermiques des dépôts sur les surfaces des composants et développer un calcultridimensionnel et non-linéaire du flux.Une comparaison de différentes techniques de pyrométries monochromatique,bichromatique et photothermique est effectuée sur une expérience de laboratoire de mesure detempérature. Une sensibilité importante de la technique de pyrométrie photothermique auxgradients de température sur la zone observée a été mise en évidence.Les dépôts en surface des composants exposés au plasma, sans inertie thermique, sontmodélisés par des champs de résistance thermique équivalente transverse. Ce champ derésistance est déterminé, en tout point de mesure, par confrontation du champ de températurede paroi issu de la thermographie avec le résultat d’une simulation par un modèlemonodimensionnel linéaire du composant. Une information sur la répartition spatiale du dépôtà la surface d’un composant est alors obtenue.Un calcul tridimensionnel et non-linéaire du champ de flux pariétal sur un composantest développé, par une méthode d’éléments finis, à partir de maillages de composants issus deCAO. La sensibilité du flux calculé à la précision des mesures de températures est discutée.Cette méthode est appliquée à des campagnes de mesures de températurebidimensionnelles par thermographie infrarouge sur des composants du tokamak JET. Leschamps de flux sur les tuiles du divertor, la protection supérieure et les protections poloïdalesinternes et externes sont déterminés et étudiés dans les deux directions, poloïdale ettoroïdale, du tokamak. La symétrie toroïdale du flux, d’une tuile à l’autre, est établie.L’influence de la résolution spatiale des mesures sur les flux calculés est discutée, à partir decomparaisons de résultats obtenus à partir de deux systèmes de thermographie de résolutionsdifférentes. / Knowing the fields of heat fluxes on the components of a tokamak is a key element todesign these devices. The goal of this thesis is the development of a method of computation ofthose heat loads from measurements of temperature by infrared thermography. The researchwas conducted on three issues arising in current tokamaks but also future ones like ITER: themeasurement of temperature on reflecting walls, the determination of thermal properties fordeposits observed on the surface of tokamak’s components and the development of a threedimensional,non-linear computation of heat loads.A comparison of several means of pyrometry, monochromatic, bichromatic andphotothermal, is performed on an experiment of temperature measurement. We show that thismeasurement is sensitive to temperature gradients on the observed area.Layers resulting from carbon deposition by the plasma on the surface of componentsare modeled through a field of equivalent thermal resistance, without thermal inertia. Thefield of this resistance is determined, for each measurement points, from a comparison ofsurface temperature from infrared thermographs with the result of a simulation, which isbased on a mono-dimensional linear model of components. The spatial distribution of thedeposit on the component surface is obtained.Finally, a three-dimensional and non-linear computation of fields of heat fluxes, basedon a finite element method, is developed here. Exact geometries of the component, releasedfrom CAD’s design, are used. The sensitivity of the computed heat fluxes is discussedregarding the accuracy of the temperature measurements.This computation is applied to two-dimensional temperature measurements of the JETtokamak. Several components of this tokamak are modeled, such as tiles of the divertor, upperlimiter and inner and outer poloïdal limiters. The distribution of heat fluxes on the surface ofthese components is computed and studied along the two main tokamak’s directions, poloidaland toroidal. Toroidal symmetry of the heat loads from one tile to another is shown. Theinfluence of measurements spatial resolution on the calculated heat fluxes is discussed bycomparing results obtained from measurements of two systems of thermography.
Identifer | oai:union.ndltd.org:theses.fr/2010ECAP0011 |
Date | 19 May 2010 |
Creators | Daviot, Ronan |
Contributors | Châtenay-Malabry, Ecole centrale de Paris, Taine, Jean |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0015 seconds