Return to search

Statistical Analysis of Detonation Stability

As detonations are being implemented into modern combustion technologies to benefit from the efficiency gain, their properties need to be fully characterized. Of main interest is hydrocarbon fuels given the substantially higher energy density over hydrogen. In thin channels detonations have been known to appear nominally 2D allowing for higher detail line-of-sight imaging techniques. Many studies have investigated hydrocarbon detonations in this mode but have not evaluated the consistency of the key detonation properties. A statistical approach is used in this study by using ensemble averaging over many realizations of the detonation to determine these properties. The experimental data was collected by igniting a pre-mixed Methane-Oxygen-Nitrogen mixture in a confined channel. The detonating wave travels through a converging section to reduce the channel width to the test condition. The detonation is then observed through a combination of high-speed schlieren imaging and a pressure transducer array. This data is then processed to provide quantified statistics for the detonation cell size, Chapman-Jouguet velocity and pressure, and the Von-Neumann pressure spike helping to further the understanding of detonations.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd2020-2855
Date15 August 2023
CreatorsBerson, Joshua
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations, 2020-

Page generated in 0.002 seconds