Return to search

Film cooling of turbine blade trailing edges

In modern gas turbine engines, film cooling is extensively used to cool the components exposed to the hot mainstream gas path. In implementing film cooling on modern gas turbine engines, the trailing edge film poses a particularly challenging design problem. From an aerodynamic point of view, the trailing edge of a blade is designed to be as thin as possible. However, this conflicts with the implementation of the cooling design. The most common method of film cooling the trailing edge is via late pressure surface discrete film cooling holes. Another method of cooling the trailing edge is by using discrete pressure surface slots. This thesis documents a comparative aerodynamic and heat transfer study of three trailing edge cooling configurations. The study was carried out using a large scale, low speed wind tunnel situated at the Southwell Laboratory. The three trailing edge cooling configurations considered were as follows. First is the common late pressure film cooling of the trailing edge via discrete film cooling holes. This configuration is designated as datum configuration. Second is the pressure surface slot coolant ejection. This configuration was designated as cast cutback configuration. The third is the pressure surface ejection via discrete film cooling holes within a step cutback. This configuration was designated the machined cutback configuration. The above configurations were incorporated into three flat plates manufactured using stereolithography. In the aerodynamic study, the static pressure distribution and discharge coefficient for the three configurations were compared. Furthermore, two dimensional total pressure measurements were carried out using a traverse mechanism downstream of the test plates. The total pressure measurements were used to compute the mixed out losses for the three configurations. It was found that the datum and machined cutback configurations have similar discharge coefficients and mixed out losses whilst the cast cutback configuration produces greater mixed out loss. The film effectiveness and heat transfer coefficient on the pressure surface downstream of the coolant ejection was obtained using a steady state heat transfer technique. The effectiveness measurements were compared with those from the literature and correlated against the two dimensional slot model. The heat transfer measurements show that the cast cutback configuration has the potential to give higher effectiveness at the trailing edge.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:635200
Date January 2013
CreatorsTelisinghe, Janendra C.
ContributorsIreland, Peter T.; Jomes, Terry V.; Gillespie, David G.
PublisherUniversity of Oxford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://ora.ox.ac.uk/objects/uuid:86c06246-16e9-4378-9a61-e09317d31a92

Page generated in 0.0018 seconds