A rear loading refuse truck was simulated with a conventional and hydraulic hybrid configuration. Models for the hydraulic hybrid components were developed to simulate the system. A control algorithm was developed using a stochastic dynamic programming approach. The results did not match those that are advertised by the commercially available systems, but reasons for this deviation are discussed. The predicted improvement in fuel economy ranged from 1% to 15% depending on variance in drive cycle and vehicle weight. A brief analysis of the cost of the hybrid system was also conducted based on an estimated drive cycle. This analysis showed that, at current fuel prices of about $4.00/gallon, the system may not make financial sense for a 10 year period of ownership. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/ETD-UT-2011-12-4681 |
Date | 20 February 2012 |
Creators | Anderson, Garrett Lance |
Source Sets | University of Texas |
Language | English |
Detected Language | English |
Type | thesis |
Format | application/pdf |
Page generated in 0.006 seconds