Return to search

Recycle of complexing reagents during mechanical pulping

The stability of hydrogen peroxide (H2O2) is a critical factor for the brightening of mechanical pulps. Inorganic ions, including Fe, Mn and Cu catalytically decompose H2O2. These troublesome metals promote the rapid transformation of H2O2 to nonselective hydroxyl radicals that degrade the cellulose fibres and decrease yields. / The interaction of aqueous metal•complexes with magnesium metal (Mg°) or bimetallic mixtures of magnesium with either palladium (Pd°/Mg°) or silver (Ag°/Mg°) were optimized to remove metals (Mn, Cu and Fe) from solution with concomitant release of the complexing reagent. The analyte metals were removed by both cementation on the surfaces of the excess Mg° and by precipitation as hydroxides. Overall, the reactions were rapid (3 or 10 min) and very efficient. The accelerators (Ag or Pd) were deposited on the surfaces of the Mg°. In a separate study, the excess of Mg° could be reused to mediate more metals removal without apparent loss of reactivity. Among the other iminodiacetate analogs (CDTA, MEDTA, EGTA, HEDTA, DPTA and MTBE), the EGTA and HEDTA proved to be possible substitutes for both efficient metal removal of Mn, Cu and Fe from solution and efficient release of chelating reagent. The measurement of particle size, performed by laser granulometry, demonstrated that smaller particles of precipitate were generated from metal-EDTA complexes by reaction with NaOH than by reaction with Pd°/Mg° bimetallic mixture. If the suspensions of particles were analyzed in the absence of ultrasound, the particles became aggregated into large flocs (up to 150 mum3 ). The reactivity of the bimetallic mixtures was exploited to remove Cu, Mn, Fe, Zn and Al that had been initially chelated with EDTA or DTPA from a thermomechanical pulp (TMP). After 15 min, the metals had been removed efficiently with the bimetallic mixtures. The EDTA released from the TMP filtrate could be recycled efficiently for a total of three cycles. On the other hand, the DTPA was not released as efficiently. Measurements of turbidity and chemical oxygen demand (COD) indicated no appreciable difference between the pulp samples with either chelating reagent. Residual H2O2 and ISO brightness measurements indicated no apparent differences among pulps that had been treated wi

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.82813
Date January 2003
CreatorsAger, Patrick
ContributorsMarshall, W. D. (advisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Food Science and Agricultural Chemistry.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 001984999, proquestno: AAINQ88406, Theses scanned by UMI/ProQuest.

Page generated in 0.0024 seconds