Return to search

Accumulation of nickel (Ni 2+) by immobilized cells of enterobacter sp.

by Kwok Shu Cheung, Eric. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1990. / Bibliography: leaves 89-106. / Acknowledgement --- p.i / Abstract --- p.ii / Introduction / Chapter A. --- Objective --- p.1 / Chapter B. --- Literature Review / Chapter 1. --- Electroplating industry in Hong Kong and its impact on the environment --- p.7 / Chapter 2. --- Physical and chemical methods for removing heavy metals from electroplating effluent --- p.11 / Chapter 3. --- Removal of heavy metals by conventional activated sludge process --- p.16 / Chapter 4. --- Acclimation of wastewater bacteria to heavy metals --- p.26 / Chapter 5. --- Biosorbent and its role in metal detoxification --- p.28 / Materials and Methods / Chapter A. --- Isolation and selection of nickel-resistant bacteria --- p.32 / Chapter B. --- Culture medium and solution --- p.33 / Chapter C. --- Growth of organism --- p.33 / Chapter D. --- Immobilization of bacterial cells --- p.36 / Chapter E. --- Effect of growth conditions on nickel removal capacity of immobilized Enterobacter sp. cells --- p.37 / Chapter F. --- Effect of bioreactor operational conditions on the Ni2+ removal capacity of immobilized bacterial cells --- p.38 / Chapter G. --- Optimization of nickel removal efficiency of bioreactor --- p.39 / Chapter H. --- Determination of Ni2+ adsorption isotherm of immobilized cells of Enterobacter sp. --- p.39 / Chapter I. --- Recovery of nickel from the bioreactor --- p.40 / Chapter J. --- Activity of the regenerated bioreactor --- p.41 / Chapter K. --- Removal of Ni2+ from synthetic effluent by bioreactor --- p.41 / Chapter L. --- Removal of Ni2+ from electroplating effluent by bioreactor. --- p.41 / Chapter M. --- Production of immobilized bacterial cells by replacement of D-glucose by molasses in the growth medium --- p.42 / Results / Chapter A. --- Isolation and selection of nickel resistant bacteria --- p.44 / Chapter B. --- Effect of growth conditions on nickel removal capacity of immobilized Enterobacter sp. cells / Chapter 1. --- Nutrient limitation --- p.44 / Chapter 2. --- D-glucose concentration --- p.45 / Chapter 3. --- Incubation temperature and incubation time --- p.45 / Chapter C. --- Heavy metal removal capacity of immobilized cells of Enterobacter sp. --- p.50 / Chapter D. --- Effect of bioreactor operational conditions on Ni2+ removal capacity of the immobilized bacterial cells --- p.50 / Chapter E. --- Optimization of nickel removal efficiency of bioreactor --- p.55 / Chapter F. --- Determination of Ni2+ adsorption isotherm of immobilized cells of Enterobacter --- p.57 / Chapter G. --- Recovery of nickel from the bioreactor and activity of regenerated bioreactor against a fresh nickel flow --- p.61 / Chapter H. --- Removal of Ni2+ from synthetic effluent by bioreactor --- p.61 / Chapter I. --- Removal of Ni2+ from electroplating effluent by bioreactor. --- p.64 / Chapter J. --- Production of immobilized bacterial cells by replacement of D-glucose by molasses in the growth medium --- p.68 / Discussions / Chapter A. --- Effect of growth conditions on nickel removal capacity of immobilized Enterobacter sp. cells --- p.70 / Chapter B. --- Heavy metal removal capacity of immobilized cells of Enterobacter sp. --- p.73 / Chapter C. --- Effect of bioreactor operational conditions on Ni2+ removal capacity of the immobilized bacterial cells --- p.74 / Chapter D. --- Optimization of nickel removal efficiency of bioreactor --- p.74 / Chapter E. --- Determination of Ni2+ adsorption isotherm of immobilized cells of Enterobacter sp. --- p.76 / Chapter F. --- Recovery of nickel from the bioreactor and activity of the regenerated bioreactor against a fresh nickel flow --- p.77 / Chapter G. --- Removal of Ni2+ from synthetic effluent by bioreactor --- p.78 / Chapter H. --- Removal of Ni2+ from electroplating effluent by bioreactor --- p.79 / Chapter I. --- Production of immobilized bacterial cells by replacement of D-glucose by molasses in the growth medium --- p.82 / Chapter J. --- Further considerations of applicability of immobilized Enterobacter sp. cells to treatment of electroplating effluent --- p.83 / Conclusions --- p.86 / References --- p.89

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_318568
Date January 1990
ContributorsKwok, Shu Cheung., Chinese University of Hong Kong Graduate School. Division of Biology.
PublisherChinese University of Hong Kong
Source SetsThe Chinese University of Hong Kong
LanguageEnglish
Detected LanguageEnglish
TypeText
Formatprint, xii, 106 leaves : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0024 seconds