Return to search

Removal and recovery of metal ions from electroplating effluent by chitin adsorption.

by Tsui Wai-chu. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2000. / Includes bibliographical references (leaves 161-171). / Abstracts in English and Chinese. / Acknowledgements --- p.i / Abstract --- p.ii / Abbreviations --- p.vii / Contents --- p.ix / Chapter 1. --- Introduction --- p.1 / Chapter 1.1 --- Literature review --- p.1 / Chapter 1.1.1 --- Metal pollution in Hong Kong --- p.1 / Chapter 1.1.2 --- Methods for removal of metal ions from industrial effluent --- p.4 / Chapter A. --- Physico-chemical methods --- p.4 / Chapter B. --- Biosorption --- p.7 / Chapter 1.1.3 --- Chitin and chitosan --- p.11 / Chapter A. --- History of chitin and chitosan --- p.11 / Chapter B. --- Structures and sources of chitin and chitosan --- p.12 / Chapter C. --- Characterization of chitin and chitosan --- p.17 / Chapter D. --- Applications of chitin and chitosan --- p.19 / Chapter 1.1.4 --- Factors affecting biosorption --- p.22 / Chapter A. --- Solution pH --- p.22 / Chapter B. --- Concentration of biosorbent --- p.24 / Chapter C. --- Retention time --- p.25 / Chapter D. --- Initial metal ion concentration --- p.26 / Chapter E. --- Presence of other cations --- p.26 / Chapter F. --- Presence of anions --- p.28 / Chapter 1.1.5 --- Regeneration of metal ion-laden biosorbent --- p.28 / Chapter 1.1.6 --- Modeling of biosorption --- p.29 / Chapter A. --- Adsorption equilibria and adsorption isotherm --- p.29 / Chapter B. --- Langmuir isotherm --- p.33 / Chapter C. --- Freundlich isotherm --- p.34 / Chapter 1.2 --- Objectives of the present study --- p.36 / Chapter 2. --- Materials and methods --- p.37 / Chapter 2.1 --- Biosorbents --- p.37 / Chapter 2.1.1 --- Production of biosorbents --- p.37 / Chapter 2.1.2 --- Pretreatment of biosorbents --- p.39 / Chapter 2.2 --- Characterization of biosorbents --- p.39 / Chapter 2.2.1 --- Chitin assay --- p.39 / Chapter 2.2.2 --- Protein assay --- p.40 / Chapter 2.2.3 --- Metal analysis --- p.41 / Chapter 2.2.4 --- Degree of N-deacetylation analysis --- p.43 / Chapter A. --- Diffuse reflectance Fourier transform infra-red spectroscopy --- p.43 / Chapter B. --- Elemental analysis --- p.43 / Chapter 2.3 --- Batch biosorption experiment --- p.44 / Chapter 2.4 --- Selection of biosorbent for metal ion removal --- p.45 / Chapter 2.4.1 --- Effects of pretreatments of biosorbents on adsorption of Cu --- p.45 / Chapter A. --- Washing --- p.45 / Chapter B. --- Pre-swelling --- p.46 / Chapter 2.4.2 --- "Comparison of Cu2+, Ni2+ and Zn2+ removal capacities among three biosorbents" --- p.46 / Chapter 2.4.3 --- Comparison of Cu2+ removal capacity of chitins with various degrees of N-deacetylation --- p.46 / Chapter 2.5 --- "Effects of physico-chemical conditions on Cu2+, Ni2+ and Zn2+ adsorption by chitin A" --- p.48 / Chapter 2.5.1 --- Solution pH and concentration of biosorbent --- p.48 / Chapter 2.5.2 --- Retention time --- p.48 / Chapter 2.5.3 --- Initial metal ion concentration --- p.49 / Chapter 2.5.4 --- Presence of other cations --- p.49 / Chapter 2.5.5 --- Presence of anions --- p.51 / Chapter 2.6 --- Optimization of Cu2+,Ni2+ and Zn2+ removal efficiencies --- p.53 / Chapter 2.7 --- "Recovery of Cu2+, Ni2+ and Zn2+ from metal ion-laden chitin A" --- p.53 / Chapter 2.7.1 --- Performances of various eluents on metal ion recovery --- p.53 / Chapter 2.7.2 --- Multiple adsorption and desorption cycle of metal ions --- p.54 / Chapter 2.8 --- Treatment of electroplating effluent by chitin A --- p.54 / Chapter 2.8.1 --- "Removal and recovery of Cu2+, Ni2+ and Zn2+ from electroplating effluent collected from rinsing baths" --- p.54 / Chapter 2.8.2 --- "Removal and recovery of Cu2+, Ni2+ and Zn2+ from electroplating effluent collected from final collecting tank" --- p.55 / Chapter 2.9 --- Data analysis --- p.56 / Chapter 3. --- Results --- p.58 / Chapter 3.1 --- Characterization of biosorbents --- p.58 / Chapter 3.1.1 --- Chitin assay --- p.58 / Chapter 3.1.2 --- Protein assay --- p.58 / Chapter 3.1.3 --- Metal analysis --- p.58 / Chapter 3.1.4 --- Degree of N-deacetylation analysis --- p.62 / Chapter A. --- Diffuse reflectance Fourier transform infra-red spectroscopy --- p.62 / Chapter B. --- Elemental analysis --- p.62 / Chapter 3.2 --- Selection of biosorbent for metal ion removal --- p.67 / Chapter 3.2.1 --- Effects of pretreatments of biosorbents on adsorption of Cu2+ --- p.67 / Chapter A. --- Washing --- p.67 / Chapter B. --- Pre-swelling --- p.67 / Chapter 3.2.2 --- "Comparison of Cu2+, Ni2+ and Zn2+ removal capacities among three biosorbents" --- p.67 / Chapter 3.2.3 --- Comparison of Cu2+ removal capacity of chitins with various degrees of N-deacetylation --- p.70 / Chapter 3.3 --- "Effects of physico-chemical conditions on Cu2+, Ni2+ and Zn2+ adsorption by chitin A" --- p.70 / Chapter 3.3.1 --- Solution pH and concentration of biosorbent --- p.70 / Chapter 3.3.2 --- Retention time --- p.78 / Chapter 3.3.3 --- Initial metal ion concentration --- p.80 / Chapter 3.3.4 --- Presence of other cations --- p.93 / Chapter 3.3.5 --- Presence of anions --- p.93 / Chapter 3.4 --- "Optimization of Cu2+, Ni2+ and Zn2+ removal efficiencies" --- p.104 / Chapter 3.5 --- "Recovery of Cu2+, Ni2+ and Zn2+ from metal ion-laden chitin A" --- p.104 / Chapter 3.5.1 --- Performances of various eluents on metal ion recovery --- p.104 / Chapter 3.5.2 --- Multiple adsorption and desorption cycle of metal ions --- p.109 / Chapter 3.6 --- Treatment of electroplating effluent by chitin A --- p.117 / Chapter 3.6.1 --- "Removal and recovery of Cu2+, Ni2+ and Zn2+ from electroplating effluent collected from rinsing baths" --- p.117 / Chapter 3.6.2 --- "Removal and recovery of Cu2+, Ni2+ and Zn2+ from electroplating effluent collected from final collecting tank" --- p.121 / Chapter 4. --- Discussion --- p.128 / Chapter 4.1 --- Characterization of biosorbents --- p.128 / Chapter 4.1.1 --- Chitin assay --- p.128 / Chapter 4.1.2 --- Protein assay --- p.129 / Chapter 4.1.3 --- Metal analysis --- p.129 / Chapter 4.1.4 --- Degree of N-deacetylation analysis --- p.130 / Chapter A. --- Diffuse reflectance Fourier transform infra-red spectroscopy --- p.130 / Chapter B. --- Elemental analysis --- p.132 / Chapter 4.2 --- Selection of biosorbent for metal ion removal --- p.133 / Chapter 4.2.1 --- Effects of pretreatments of biosorbents on adsorption of Cu2+ --- p.133 / Chapter A. --- Washing --- p.133 / Chapter B. --- Pre-swelling --- p.133 / Chapter 4.2.2 --- "Comparison of Cu2+, Ni2+ and Zn2+ removal capacities among three biosorbents" --- p.134 / Chapter 4.2.3 --- Comparison of Cu2+ removal capacity of chitins with various degrees of N-deacetylation --- p.136 / Chapter 4.3 --- "Effects of physico-chemical conditions on Cu2+, Ni2+ and Zn2+ adsorption by chitin A" --- p.137 / Chapter 4.3.1 --- Solution pH and concentration of biosorbent --- p.137 / Chapter 4.3.2 --- Retention time --- p.138 / Chapter 4.3.3 --- Initial metal ion concentration --- p.139 / Chapter 4.3.4 --- Presence of other cations --- p.141 / Chapter 4.3.5 --- Presence of anions --- p.143 / Chapter 4.4 --- "Optimization of Cu2+, Ni2+ and Zn2+ removal efficiencies" --- p.147 / Chapter 4.5 --- "Recovery of Cu2+, Ni2+and Zn2+ from metal ion-laden chitin A" --- p.148 / Chapter 4.5.1 --- Performances of various eluents on metal ion recovery --- p.148 / Chapter 4.5.2 --- Multiple adsorption and desorption cycle of metal ions --- p.149 / Chapter 4.6 --- Treatment of electroplating effluent by chitin A --- p.150 / Chapter 4.6.1 --- "Removal and recovery of Cu2+, Ni2+ and Zn2+ from electroplating effluent collected from rinsing baths" --- p.150 / Chapter 4.6.2 --- "Removal and recovery of Cu2+, Ni2+ and Zn2+ from electroplating effluent collected from final collecting tank" --- p.152 / Chapter 5. --- Conclusion --- p.154 / Chapter 6. --- Further studies --- p.156 / Chapter 7. --- Summary --- p.158 / Chapter 8. --- References --- p.161

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_323263
Date January 2000
ContributorsTsui, Wai-chu., Chinese University of Hong Kong Graduate School. Graduate Board on Environmental Science.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xviii, 171 leaves : ill. (some col.) ; 30 cm.
CoverageChina, Hong Kong, China, Hong Kong
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0037 seconds