In this thesis, a combined feedforward and feedback controller for improved path tracking on autonomous heavy-duty vehicles is designed and implemented. The steering wheel is controlled in order to follow a reference curvature, computed by a higher-level MPC, responsible for minimizing the distance to a planned path. The steering dynamics, from steering wheel via wheel angles, to a measurable vehicle curvature, is modeled, and a conversion from desired curvature gain to input angle to the steering wheel is derived. Tests with an autonomous Scania R580 show that the desired curvature can be followed with satisfactory small error, both in a designed slalom path and on a more generic test track. By utilizing future curvature values computed by the MPC, a non-causal feedforward controller can reduce the delay from input to the steering wheel to a measured response in curvature, by almost two thirds, compared to the currently implemented solution. Compared to an open-loop control design, tests in simulation show that a feedback controller can reduce errors in curvature gain. However, with the identified steering dynamics and the improved conversion from steering wheel angle to curvature, no further improvement in the curvature gain was seen when implementing the feedback controller in the test vehicle. Care must also be taken not to introduce instability in the system when the feedback controller is implemented in series with a high-level MPC. / Den här rapporten beskriver design och implementering av en regulator med kombinerad framkoppling och återkoppling för förbättrad banföljning av autonoma tunga fordon. Fordonets ratt styrs för att följa en kurvaturreferens beräknad av en överordnad MPC, ansvarig för att minimera avståndet till en planerad bana. Dynamiken i styrningen, från ratten via hjulvinklarna till en mätbar kurvatur för fordonet, är modellerad. En översättning från önskad förstärkning av kurvatur till insignal för rattvinkeln är också framtagen. Tester utförda med en autonom Scania R580 visar att den önskade kurvaturen kan följas med tillfredsställande litet fel, både i en egendesignad slalombana och i en mer generisk testbana. Genom att utnyttja framtida referensvärden för kurvatur beräknade av MPC:n, kan en icke-kausal framkopplande regulator minska fördröjningen från insignal till ratten till en mätbar respons i fordonets kurvatur. Jämfört med den nuvarande lösningen minskas fördröjningen med nästan två tredjedelar. Jämfört med en öppen styrning visar tester i simulering att en återkoppling i regulatorn kan minska stationära fel i kurvatur. Med implementeringen av den identifierade styrdynamiken och den förbättrade översättningen från rattvinkel till kurvatur, syntes dock med återkoppling ingen ytterliggare förbättring i testfordonet. Implementering av den återkopplande regulatorn i serie med den överordnade MPC:n behöver också göras med omsorg för att inte introducera instabilitet i systemet.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-149266 |
Date | January 2018 |
Creators | Törnroth, Oscar, Nyberg, Truls |
Publisher | Linköpings universitet, Fordonssystem, Linköpings universitet, Fordonssystem |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0027 seconds