Anthropogenic activities and natural processes over time have led to the release of toxic heavy metal contaminants into the environment. As a consequence, there is an increasing number of illnesses caused by the exposure of humans to heavy metals and metalloids. The dissertation work presented here focused on the synthesis, characterization, and understanding of the surface chemistry, as well as the photo-reactivity, of a variety of iron (oxyhydr)oxide nano-materials that have relevance for the remediation of heavy metal contaminants, such as arsenic and chromium in aqueous environments. The research focused on the photo-induced reductive dissolution of a nano-dimensioned iron oxyhydroxide, ferrihydrite, in the presence of oxalate, the photo-induced arsenite oxidation, and the simultaneous redox transformation of arsenite and chromate in the presence of ferrihydrite and another environmentally relevant iron oxyhydroxide, goethite. The photo-reductive dissolution of ferrihydrite (using simulated solar radiation) in the presence of oxalic acid was investigated with surface sensitive in situ and ex situ techniques that included attenuated total reflectance Fourier transform infrared spectroscopy. Ferrihydrite at a solution pH of 4.5 exhibited an induction period where the rate of Fe(II) release was limited by a low concentration of adsorbed oxalate due to the site-blocking of carbonate that was intrinsic to the surface of the ferrihydrite starting material. The photo-induced decarboxylation of adsorbed oxalate also ultimately led to the appearance of carbonate reaction product (distinct from carbonate intrinsic to the starting material) on the surface. Ferrihydrite that was prepared under carbonate free condition showed a rapid release of Fe(II) upon irradiation and no induction period was observed. Arsenite [As(III)] oxidation in the presence of ferrihydrite and goethite was also investigated. Ferrihydrite or goethite when exposed to As(III) in the dark led to no change in the oxidation state of As(III) reactant. However, exposure of As(III) in the presence of ferrihydrite or goethite to simulated solar light resulted in the oxidation of As(III) and a reduction of surface Fe(III) leading to an overall increase in the total As removal. At a solution pH of 5, this conversion of As(III) to As(V) on ferrihydrite resulted in the partitioning of a stoichiometric amount of Fe(II) into the aqueous phase and the majority of the As(V) product remained bound to the ferrihydrite surface. In contrast, the As(III)/goethite system showed a different photochemical behavior in the absence or presence of dissolved oxygen. Under oxic conditions, in contrast to ferrihydrite, the majority of the As(V) product was in the aqueous phase and the relative amount of aqueous Fe(II) was significantly less than in the ferrihydrite circumstance. Experimental observations suggested that in the oxic environment, Fe(II) on the goethite surface was heterogeneously oxidized to Fe(III) by dissolved oxygen resulting in the formation of reactive oxygen species that led to the further oxidation of As(III) in solution. Similarly, various experimental investigations were conducted to test the simultaneous removal of As(III) and Cr(VI) from solution. Our results suggested that a surface mediated spontaneous electron transfer between As(III) and Cr(VI) occurred in the presence of Fe- and Al-(oxy)hydroxides. Both infrared and x-ray absorption spectroscopies were conducted to get more insight into the charge transfer reaction and mechanism of electron transfer reaction. In summary, the research discussed here should help to understand the details of oxidation/reduction reactions occurring at mineral-water interfaces. Perhaps more importantly, the methodologies discussed in this dissertation could potentially be novel and eco-friendly approaches for arsenite as well as hexavalent chromium remediation. / Chemistry
Identifer | oai:union.ndltd.org:TEMPLE/oai:scholarshare.temple.edu:20.500.12613/794 |
Date | January 2013 |
Creators | Bhandari, Narayan |
Contributors | Strongin, Daniel R., Valentine, Ann M., Zdilla, Michael J., 1978-, Van Aken, Benoit |
Publisher | Temple University. Libraries |
Source Sets | Temple University |
Language | English |
Detected Language | English |
Type | Thesis/Dissertation, Text |
Format | 216 pages |
Rights | IN COPYRIGHT- This Rights Statement can be used for an Item that is in copyright. Using this statement implies that the organization making this Item available has determined that the Item is in copyright and either is the rights-holder, has obtained permission from the rights-holder(s) to make their Work(s) available, or makes the Item available under an exception or limitation to copyright (including Fair Use) that entitles it to make the Item available., http://rightsstatements.org/vocab/InC/1.0/ |
Relation | http://dx.doi.org/10.34944/dspace/776, Theses and Dissertations |
Page generated in 0.0105 seconds