Return to search

Spherical Elements in the Affine Yokonuma-Hecke Algebra

In Chapter 1 we introduce the Yokonuma-Hecke Algebra and a Yokonuma-Hecke Algebra-module. In Chapter 2 we determine that the possible eigenvalues of particular elements in the Yokonuma-Hecke Algebra acting on the module. In Chapter 3 we find determine module subspaces and eigenspaces that are isomorphic. In Chapter 4 we determine the structure of the q-eigenspace. In Chapter 5 we determine the spherical elements of the module. / Master of Science / The Yokonuma-Hecke Algebra-module is a vector space over a particular field. Acting on vectors from the module by any element of the Yokonuma-Hecke Algebra corresponds to a linear transformation. Then, for each element we can find eigenvalues and eigenvectors. The transformations that we are considering all have the same eigenvalues. So, we consider the intersection of all the eigenspaces that correspond to the same eigenvalue. I.e. vectors that are eigenvectors of all of the elements. We find an algorithm that generates a basis for said vectors.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/99307
Date08 July 2020
CreatorsShaplin, Richard Martin III
ContributorsMathematics, Orr, Daniel D., Linnell, Peter A., Shimozono, Mark M.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0019 seconds