Return to search

Data Compression for Helioseismology

Die effiziente Kompression von Daten wird eine wichtige Rolle für mehrere bevorste-
hende und geplante Weltraummissionen spielen, die Helioseismologie betreiben werden,
wie beispielsweise Solar Orbiter. Solar Orbiter ist die nächste Mission, die Helioseismologie beinhaltet, und soll im Oktober 2018 gestartet werden. Das Hauptmerkmal von
Solar Orbiter ist der Orbit. Die Umlaufbahn des Satelliten wird zur Ekliptik geneigt
sein, sodass der Satellit einen solaren Breitengrad von bis zu 33 Grad erreichen wird. Dies
wird erstmals ermöglichen, die Pole der Sonne mit Hilfe von lokaler Helioseismologie
zu studieren. Zusätzlich dazu können kombinierte Beobachtungen von Solar Orbiter
und einem anderen Instrument dazu benutzt werden, die tiefen Schichten der Sonne
mittels stereoskopischer Helioseismologie zu erforschen. Die Aufnahmen der Dopplergeschwindigkeit und der Kontinuumsintensität, die für Helioseismologie benötigt werden, werden vom Polarimetric and Helioseismic Imager (PHI) geliefert werden.
Große Hindernisse für Helioseismologie mit Solar Orbiter sind die niedrige Datenüber-
tragungsrate und die (wahrscheinlich) kurzen Beobachtungszeiten. Außerdem erfordert
die Untersuchung der Pole der Sonne Beobachtungen in der Nähe des Sonnenrandes,
sogar von dem geneigten Orbit von Solar Orbiter aus. Dies kann zu systematischen
Fehlern führen.
In dieser Doktorarbeit gebe ich eine erste Einschätzung ab, wie stark Helioseismologie
von verlustbehafteter Datenkompression beeinflusst wird. Mein Schwerpunkt liegt dabei
auf der Solar Orbiter Mission, die von mir erzielten Ergebnisse sind aber auch auf andere
geplante Missionen übertragbar.
Zunächst habe ich mit Hilfe synthetischer Daten die Eignung des PHI Instruments für
Helioseismologie getestet. Diese basieren auf Simulationen der Konvektion nahe der Sonnenoberfläche und einem Modell von PHI. Ich habe eine sechs Stunden lange Zeitreihe
synthetischer Daten erstellt, die die gleichen Eigenschaften wie die von PHI erwarteten
Daten haben. Hierbei habe ich mich auf den Einfluss der Punktspreizfunktion, der Vibrationen des Satelliten und des Photonenrauschen konzentriert. Die von diesen Daten
abgeleitete spektrale Leistungsdichte der solaren Oszillationen legt nahe, dass PHI für
Helioseismologie geeignet sein wird.
Aufgrund der niedrigen Datenübertragungsrate von Solar Orbiter müssen die von
PHI für die Helioseismologie gewonnenen Daten stark komprimiert werden. Ich habe
den Einfluss von Kompression mit Hilfe von Daten getestet, die vom Helioseismic and
Magnetic Imager (HMI) stammen. HMI ist ein Instrument an Bord des Solar Dynam-
ics Observatory Satelliten (SDO), der 2010 gestartet worden ist. HMI erstellt mit hoher
zeitlicher Abfolge Karten der Kontinuumsintensität, der Dopplergeschwindigkeit und des
kompletten Magnetfeldvektors für die komplette von der Erde aus sichtbare Hemispäre
der Sonne. Mit Hilfe mit von HMI aufgenommenen Karten der Dopplergeschwindigkeit
konnte ich zeigen, dass das Signal-zu-Rausch Verhältnis von Supergranulation in der
Zeit-Entfernungs Helioseismologie nicht stark von Datenkompression beeinflusst wird.
Außerdem habe ich nachgewiesen, dass die Genauigkeit und Präzision von Messungen
der Sonnenrotation mittels Local Correlation Tracking von Granulation durch verlust-
behaftete Datenkompression nicht wesentlich verschlechtert werden. Diese Ergebnisse
deuten an, dass die niedrige Datenübertragungsrate von Solar Orbiter nicht unbedingt ein
großes Hinderniss für Helioseismologie sein muss.

Identiferoai:union.ndltd.org:uni-goettingen.de/oai:ediss.uni-goettingen.de:11858/00-1735-0000-0023-9651-D
Date29 July 2015
CreatorsLöptien, Björn
ContributorsGizon, Laurent Prof. Dr.
Source SetsGeorg-August-Universität Göttingen
LanguageEnglish
Detected LanguageGerman
TypedoctoralThesis
Rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/

Page generated in 0.0027 seconds