Concrete is the most widely used man-made material in the world. Its versatility, strength, and relative ease of construction allow it to be used in the majority of civil infrastructure. However, concrete production plays a significant role in greenhouse gas emissions, accounting for around 8% of CO2 emissions worldwide. This thesis aims to reduce the demand for cement in concrete construction, thus reducing the carbon footprint of the concrete, by focusing on classifying and determining the effectiveness of seven different quarry by-products as partial replacements of cement.
Several methods were utilized in this study to characterize the quarry by-products: particle size distribution, helium pycnometry, X-Ray diffraction, X-Ray fluorescence, scanning electron microscopy, and a modified ASTM C1897 Method A that utilizes isothermal calorimetry and thermogravimetric analysis. These various methods allowed for the determination of the physical properties (e.g., gradation, specific gravity, and morphology) and the chemical properties (e.g., mineralogy and reactivity in a cementitious system).
The quarry by-products were classified as four granites, two limestones, and one greenstone. These quarry by-products were found to be non-pozzolanic and non-hydraulic. However, there are indications that there may be reactions with the various clays and feldspars in the quarry by-products with calcium hydroxide, which suggests a degree of reactivity that is not necessarily pozzolanic or hydraulic. / Master of Science / Concrete is the most widely used man-made material in the world. Its versatility, strength, and relative ease of construction allow it to be used in the majority of civil infrastructure. However, concrete production plays a significant role in greenhouse gas emissions, accounting for around 8% of CO2 emissions worldwide. This thesis aims to reduce the demand for cement in concrete construction, thus reducing the carbon footprint of the concrete, by focusing on classifying and determining the effectiveness of seven different quarry by-products as partial replacements of cement.
Several methods were utilized in this study to determine the physical properties (e.g., gradation, specific gravity, and morphology) and the chemical properties (e.g., mineralogy and reactivity in a cementitious solution) of the materials. The quarry by-products were classified as four granites, two limestones, and one greenstone. In general, these quarry by-products were not found to be reactive as a supplementary cementitious material, although the data may suggest some degree of reactivity between calcium hydroxide and the clays and/or feldspars in the quarry by-products.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/116075 |
Date | 21 August 2023 |
Creators | Nguyen, Tu-Nam N. |
Contributors | Civil and Environmental Engineering, Brand, Alexander S., Case, Scott W., Caddick, Mark J. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Language | English |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0022 seconds