Return to search

Acoustic Wave Scattering From a Rough Seabed With a Continuously Varying Sediment Layer Overlying an Elastic Basement

Acoustic plane wave intearctions with a rough seabed with a continuously varying density and sound speed in a fluid-like sediment layer overlying an elastic basement is considered in this thesis. The acoustic properties in the sediment layer possess an exponential type of variation in density and one of the three classes of sound speed profiles, which are constant, k^2-linear, or inverse-square variations. Analytical solutions for the Helmholtz equation in the sediment layer, combined with a formulation based upon boundary perturbation theory, facilitate numerical implementation for the solution of coherent field.
The coherent reflection coefficients corresponding to the aformentioned density and sound speed profiles for various frequencies, roughness parameters, basement stiffness, are numerically generated and analyzed. Physical interpretations are provided for various results. This simple model characterizes three important features of an realistic sea floor, including seabed roughness, sediment inhomogenieties, and basement shear property,%Two dimensions is considered in the seafloor environment and the random roughness is belong to one dimension space.%
, therefore, provides a canonical model for the study of seabed acoustics.
The variation of the acoustic properties takes such a form that it is not only geologically realistic, but also renders analytical solutions for the Helmholtz equation, thus facilitating the formulation of the problem. The computational algorithm for the spatial spectrum of the scattered field due to random seabed has been developed based upon a boundary perturbation method. %About scattering field, only one time reflection from the sediment is taked account of, because the higher numerical order is, the lower scattering energy exist.%
The results have shown that, while the coherent field mainly depends upon the gross structure of the rough seabed represented by the RMS roughness, the scattered field heavily depends upon the details of the roughness structure specialized by the roughness power spectrum and the spatial correlation length of the rough surface. The dependence of the spatial spectrum on the sediment stratification is also carefully examined.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0801102-221715
Date01 August 2002
CreatorsTsai, Sheng-Hsiung
ContributorsCho-Teng Liu, Jin-Yuan Liu, Chau-Chang Wang
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0801102-221715
Rightsunrestricted, Copyright information available at source archive

Page generated in 0.0018 seconds