The purpose of this thesis is to study the effects of hyperbolic transformations on the cubic that is determined by locus of centroids of the equilateral triangles in H² whose base coincides with the line y=0, and whose common vertex is at the origin. The derivation of the formulas within this work are based on the Poincaré disk model of H², where H² is understood to mean the hyperbolic plane. The thesis explores the properties of both the untransformed cubic (the original locus of centroids) and the transformed cubic (the original cubic taken under a linear fractional transformation).
Identifer | oai:union.ndltd.org:csusb.edu/oai:scholarworks.lib.csusb.edu:etd-project-1142 |
Date | 01 January 2003 |
Creators | Marfai, Frank S. |
Publisher | CSUSB ScholarWorks |
Source Sets | California State University San Bernardino |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses Digitization Project |
Page generated in 0.0023 seconds