Return to search

Identification of the gene responsible for peripheral neuropathy associated with agenesis of the corpus callosum

Peripheral neuropathy associated with agenesis of the corpus callosum (ACCPN or HMSN/ACC) is a severe polyneuropathy affecting both the peripheral nervous system and the central nervous system. It is transmitted as an autosomal recessive trait and is particularly frequent in the French Canadian population of Quebec (Canada). The disease was linked to chromosome 15 in 1996 by Dr. Rouleau's team. / We genotyped polymorphic markers in the ACCPN candidate region on chromosome 15 in over 67 patients and 200 control individuals. Observation of affected haplotypes confirmed the presence of a founder effect in the French Canadian population. Recombination analysis reduced the candidate interval to approximately 2 cM between markers D15S1040 and ACTC on chromosome 15. Linkage disequilibrium analysis suggested the gene resides nearest marker D15S1232. A physical map of the newly refined candidate region was constructed using YAC, BAC and PAC clones. These clones were used to confirm the position of candidate ESTs and genes as being either within or outside the ACCPN candidate region. / The connexin 36 gene, which was confirmed to reside within the region, was excluded as the gene responsible for ACCPN using SSCP analysis. The SLC12A6 gene was also confirmed to reside within the candidate interval and was tested for mutations using SSCP, dHPLC and sequence analyses. We found a total of four disease-specific mutations in SLC12A6, all of which are expected to truncate the KCC3 protein (the protein produced by the SLC12A6 gene). Two of the four mutations were identified in the French Canadian population; 80 French Canadian ACCPN patients are homozygous for the c.2436delG in exon 18 and one French Canadian patient is a compound heterozygote, having the c.2436delG mutation as well as the 1584_1585delCTinsG mutation in exon 11. Two additional mutations were identified in one Turkish and one Italian family in exons 22 and 15 respectively. The effects of the c.2436delG mutation on KCC3 function was studied in X. laevis oocytes and the truncated protein is not functional. Finally, collaborators at Vanderbilt University disrupted the slc12a6 gene in the mouse and found a phenotype similar to the human disease. / Identification of SLC12A6 as the gene mutated in ACCPN will allow for accurate molecular diagnosis as well as carrier testing in the French Canadian population. It is also the first step in understanding the molecular mechanism leading to the disease.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.84259
Date January 2003
CreatorsHoward, Heidi C.
ContributorsRouleau, Guy A. (advisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Biology.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 002085498, proquestno: AAINQ98274, Theses scanned by UMI/ProQuest.

Page generated in 0.0022 seconds