Die vorliegende Arbeit liefert einen Beitrag zur Synthese alpha-heteroatomstabilisierter Lithiumorganyle (Heteroatom = Schwefel, Silicium, Stickstoff), sowie Struktur/Reaktivtätsstudien auf der Basis von strukturellen Charakterisierungen. Dabei standen verschiedene Methoden zur räumlichen Verknüpfung der alpha-heteroatomstabilisierten Lithiumorganyle mit einer definierten stereochemischen Information im Mittelpunkt der Forschungsarbeit. Die Arbeit gliedert sich in die folgenden drei Bereiche: Studien zu Struktur, Reaktivität und stereochemischen Aspekten von alpha-(Phenylthio)benzyllithium; 2-silylsubstituierte N-Methylpyrrolidine: Stereochemische Studien zur Darstellung und Reaktivität; Festkörperstrukturen wichtiger (–)-Spartein-koordinierter Deprotonierungsreagenzien auf der Basis einfacher Lithiumorganyle. Den ersten Schwerpunkt dieser Arbeit bildeten Studien zu Struktur, Reaktivität und stereochemischen Aspekten von alpha-(Phenylthio)benzyllithium. Am Beispiel von alpha-(Phenylthio)benzyllithium sollte die intermolekulare Einführung einer stereochemischen Information durch ein chirales Auxiliar [(–)-Spartein] genauer studiert werden. Aufbauend auf Studien von T. Toru und Mitarbeitern, die gezeigt hatten, dass gerade (–)-Spartein bei der asymmetrischen Deprotonierung von Benzylphenylsulfid keine befriedigende asymmetrische Induktion bewirkt, wurde eine Erklärung für diese mangelnde Stereoselektivität gesucht. Dabei erhoffte man sich, durch Kenntnisse der Festkörperstruktur Rückschlüsse auf die Reaktivität ziehen zu können und Ansatzpunkte für eine Verbesserung der Stereoselektivität zu finden. Um ein genaueres Verständnis für diese Metallierungsreaktion entwickeln zu können, wurden zunächst Studien zur Deprotonierung von Benzylphenylsulfid sowohl in Anwesenheit verschiedener koordinierender achiraler Zusätze [THF, TMEDA, PMDTA], des chiralen Zusatzes (–)-Spartein als auch ohne koordinierendes Solvens durchgeführt. Dabei erhielt man Hinweise auf Prozesse, welche die Stereoselektivität beeinflussen, wie z. B. eine durch Tageslicht induzierte Ablösung des Metallkomplexfragmentes vom „carbanionischen“ Zentrum oder eine auf Carbenbildung basierende Zersetzungsreaktion des primär gebildeten Lithiumalkyls. Den zweiten Schwerpunkt dieser Arbeit bildeten stereochemische Studien zur Darstellung und Reaktivität von 2-silylsubstituierten N-Methylpyrrolidinen. Im Mittelpunkt standen Studien zur Übertragung der Stereoinformation von einem bestehenden auf das neu generierte (lithiierte) Stereozentrum innerhalb eines „starren Systems“, das durch intramolekulare Koordination des Lithiumzentrums gebildet wurde. Dabei konnten u. a. ein interessanter Zugang zu enantiomerenreinen N-Methyl-2-silylsubstituierten Pyrrolidinen und zu enantiomerenangereicherten 2-silylsubstituierten Pyrrolidinen, die am Stickstoffzentrum funktionalisiert werden können, gezeigt werden. Weiterhin erhielt man in anschließenden Studien zur Metallierung dieser N-Methyl-2-silylsubstituierten Pyrrolidine einen Einblick in den stereochemischen Verlauf dieser Reaktion und die strukturbestimmenden Faktoren. Den dritten Schwerpunkt dieser Arbeit bildete die strukturelle Charakterisierung wichtiger (–)-Spartein-koordinierter Deprotonierungsreagenzien auf der Basis einfacher Lithiumorganyle im Festkörper. Die Kombinationen aus (–)-Spartein und verschiedenen Alkyllithiumbasen gelten als die entscheidenden Reagenzien zum Aufbau „optisch aktiver Carbanionen“. Die Reaktivität von Lithiumorganylen steht oft in einem engen Zusammenhang mit der Struktur, so dass versucht wurde, durch Interpretation der Festkörperstrukturen eine Erklärung für die unterschiedlichen Reaktivitäten der verschiedenen (–)-Spartein-koordinierten Alkyl- und Aryllithiumbasen zu finden. Dabei zeigte eine vergleichende Untersuchung der Festkörperstrukturen von (–)-Spartein-koordinierten Organolithiumverbindungen einen klaren Zusammenhang zwischen dem sterischen Anspruch der Alkyl- bzw. Aryllithiumbase und dem Aggregationsgrad. Je größer der sterische Anspruch der Alkyllithiumbase ist, desto kleiner ist der Aggregationsgrad, wobei gerade Monomere als die reaktive Spezies in Deprotonierungsreaktion postuliert werden. Eine gezielte Abnahme des Aggregationsgrades kann also durch eine Erhöhung des sterischen Anspruches der Organolithiumbase erreicht werden, so dass durch den Einsatz der sterisch anspruchsvollen Alkyllithiumbase tert-Butyllithium sogar die erste monomere Festkörperstruktur einer Butyllithiumverbindung erhalten werden konnte. Aber auch weitere (–)-Spartein-koordinierte Alkyl- und Aryllithiumbasen besitzen im Festkörper interessante und z. T., für einfache Lithiumalkyle unbekannte, Strukturmotive, so dass Rückschlüsse auf die Reaktivitäten gezogen werden konnten. Diese Studien zu Festkörperstrukturen (–)-Spartein-koordinierter Deprotonierungsreagenzien wurden durch quantenchemische Studien unterstützt. / This work presents new synthetic routes leading to alpha-heteroatom stabilized organolithiums (heteroatom = sulphur, silicon, nitrogen) and examines structure and reactivity on the basis of solid-state structures. The main topic was the combination of alpha-heteroatom stabilized organolithiums with a definite stereochemical information. The thesis consists of three parts: Studies on the structure, reactivity and stereochemistry of alpha-lithiobenzyl phenyl sulfide; 2-silylated N-methylpyrrolidines: stereochemical studies concerning synthesis and reactivity; Crystal structures of important (–)-sparteine-coordinated alkyllithium bases. The first part of this work were studies on structure, reactivity and stereochemical aspects of alpha-lithiobenzyl phenyl sulfide. alpha-Lithiated benzyl phenyl sulfide has been investigated for the possibility of intermolecular introduction of stereochemical information by a chiral auxiliary such as (–)-sparteine. However, studies of T. Toru and coworkers showed that the presence of (–)-sparteine does not lead to substantial asymmetric induction in the lithiation of benzyl phenyl sulfide. Knowledge of the crystal structures can help to find an explanation for this lack of stereoselectivity and suggest ways of improving it. To develop a better understanding of the steps involved in the metalation reaction, the lithiation of benzyl phenyl sulfide was performed in the presence of several achiral coordinating substances [THF, TMEDA, PMDETA], the chiral auxiliary (–)-sparteine and without a coordinating solvent. Thereby we got interesting hints for processes affecting the stereoselectivity, e. g. a photoinduced dissolution process of the metal fragment from the “carbanionic” centre or a decomposition reaction, based on carbene formation, of the initially formed lithiumalkyl. The second part of this work were stereochemical studies concerning synthesis and reactivity of 2-silylated N-methylpyrrolidines. Most attention was directed towards the transfer of stereochemical information from the existing to a newly generated stereogenic centre, under the conditions of intramolecular coordination of the lithium centre. Thereby an interesting way to enantiomerically pure N-methyl-2-silyl substituted pyrrolidines and to enantioenriched 2-silyl substituted pyrrolidines, which can be functionalized at the nitrogen centre, has been shown. Further on it was possible in metalation studies to get important insights in the stereochemical pathway and in structure-determining factors. The third part of this work was the determination of crystal structures of important (–)-sparteine coordinated alkyl- and aryllithium bases. Adducts between (–)-sparteine and “simple” lithiumorganyls are the vital reagents for the synthesis of “chiral carbanions“. The reactivity of organolithium compounds is often related to the structure, such that it can be possible to find an explanation for differing reacitivities by studying the crystal structures. A comparative analysis of the crystal structures of (–)-sparteine-coordinated “simple” organolithium compounds in the solid state displays a clear correlation of the steric influence of the alkyl and aryllithium base with the aggregation level. The bigger the steric influence the smaller the aggregation level becomes, whereas monomers have been postulated as the reactive species in deprotonation reactions. A selective decrease of the aggregation level can be achieved by using bulky organolithium compounds. The first monomeric molecular structure in the solid state was obtained by using the sterically demanding alkyllithium base tert-butyllithium. But also other (–)-sparteine coordinated alkyl- and arlyllithiumbases form very interesting and sometimes unknown structural motifs in the solid state, so it was possible to draw important conclusions to the reacitivity. These studies on (–)-sparteine coordinated deprotonation reagents in the solid state were underlined by quantenchemical calculations.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:781 |
Date | January 2004 |
Creators | Strohfeldt, Katja |
Source Sets | University of Würzburg |
Language | deu |
Detected Language | German |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.1145 seconds