Return to search

Mobility management and vertical handover decision making in heterogeneous wireless networks

Mobility management over heterogeneous wireless networks is becoming a major interest area as new technologies and services continue to proliferate within the wireless networking market. In this context, seamless mobility is considered to be crucial for ubiquitous computing. Service providers aim to increase the revenue and to improve users' satisfaction. However there are still many technical and architectural challenges to overcome before achieving the required interoperability and coexistence of heterogeneous wireless access networks. Indeed, the context of wireless networks is offering multiple and heterogeneous technologies (e.g. 2G to 4G, WiFi, Wimax, TETRA,...). On the one hand, this rich environment allows users to take profit from different capacities and coverage characteristics. Indeed, this diversity can provide users with high flexibility and allow them to seamlessly connect at any time and any where to the access technology that best fits their requirements. Additionally, cooperation between these different technologies can provide higher efficiency in the usage of the scarce wireless resources offering more economic systems for network providers. On the other hand, the heterogeneity of technologies and architectures and the multiplication of networks and service providers creates a complex environment where cooperation becomes challenging at different levels including and not limited to mobility management, radio resource provisioning, Quality of Service and security guarantees. This thesis is focusing on mobility management and mainly on decision making for Vertical handover within heterogeneous wireless network environments. After the analysis of the related state of the art, we first propose a reputation based approach that allows fast vertical handover decision making. A decision making scheme is then built on that approach. Network's reputation, is a new metric that can be gathered from previous users' experiences in the networks. We show that it is an efficient construct to speed up the vertical handover decision making thanks to anticipation functionalities. While the main objective remains guaranteeing the best Quality of Service and optimal radio resource utilization, economical aspects have also to be considered including cost minimization for users and revenue maximization for network providers. For this aim, we propose, in the second part of the thesis, a game theoretic based scheme that allows maximizing benefits for both networks and users. In this solution, each available network plays a Stackelberg game with a finite set of users, while users are playing a Nash game among themselves to share the limited radio resources. A Nash equilibrium point, that maximizes the user's utility and the service provider revenue, is found and used for admission control and vertical handover decision making. The analyses of the optimal bandwidth/prices and the revenue at the equilibrium point show that there are some possible policies to use according to user's requirements in terms of QoS and to network capacities. For instance, we pointed out that networks having same capacities and different reputation values should charge users with different prices which makes reputation management very important to attract users and maximize networks' revenue. In the third part of this thesis, we provide and discuss two different architectural and implementation solutions on which our proposed vertical handover decision mechanisms can be integrated. The first proposed architecture is a centralized one. It is based on the IEEE 802.21 standard to which some extensions are proposed. The second proposed architecture is distributed. It is based on an overlay control level composed of two virtualization layers able to make reasoning on behalf of physical entities within the system. This architecture allows higher flexibility especially for loosely coupled interconnected networks

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00814578
Date23 January 2012
CreatorsZEKRI, Mariem
PublisherInstitut National des Télécommunications
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0017 seconds