Dans le milieu interstellaire (MIS) les grains de poussière jouent un rôle très important pour la chimie au sein des nuages moléculaires offrant une surface froide sur laquelle les atomes et molécules de la phase gazeuse vont s'accréter, formant un manteau de glace. Les nuages moléculaires sont caractérisés par des basses températures (10-50 K) et sont le lieu de formation des étoiles. Après effondrement gravitationnel du nuage suite à une trop forte densité en son sein, celui-ci devient le lieu de formation d'une nouvelle étoile. L'enveloppe autour de l'étoile évolue en disque dans lequel pourra se former des planètes, astéroïdes, comètes et autres objets d'un système planétaire. Durant cette formation stellaire, les glaces interstellaires (et les molécules qu'elles contiennent) sont alors soumises à plusieurs processus énergétiques (cycle de réchauffement, irradiations par des photons UV ou des particules chargées) qui vont affecter leurs compositions chimiques et finalement augmenter la complexité moléculaire avant leur incorporation dans les différentes objets du futur système planétaire. En laboratoire, afin de mieux comprendre l'évolution des molécules, composantes des glaces, nous avons développé une nouvelle approche qui consiste à réaliser des analogues "spécifiques" auxquels un seul processus énergétique à la fois est appliqué. Nous avons alors montré l'importance de l'effet thermique longtemps négligé pour la formation de molécules organiques complexes, montrant plusieurs implications astrophysiques et exobiologiques. Nos études permettent une meilleure compréhension des processus chimiques qui ont lieu dans la phase solide du MIS. / Dust grains in the interstellar medium (ISM) play an important role in dense molecular clouds chemistry in providing a surface (catalyst) upon which atoms and molecules can freeze out, forming icy mantles. Dense molecular clouds are characterized by low temperature (10-50 K) and represent the birth sites of stars. After a gravitational breakdown, a part of the dense molecular cloud collapses toward the formation of star and subsequently a protoplanetary disk from which planets, asteroids and comets will appear. During this evolution, interstellar organic material inside ices undergoes different range of chemical alterations (thermal cycling process, ultraviolet photons, cosmic rays irradiation) hence increasing the molecular complexity before their incorporation inside precometary ices. In laboratory, in order to better understand the evolution of molecules in interstellar ices, we developed a new approach by making "specifics" interstellar ices analogues submitted to one energetic process at time. Consequently we showed the importance of thermal reactivity (neglected effect for long time) for the formation of complexes organics molecules (HMT, trimers, aminoalcools) which are more refractory compounds than water. Our works have many implications in astrophysics since we gave crucial informations on the chemical processes that are happening in solid phase chemistry of the ISM, and on the formation of news molecules which could be incorporated in parent's body of meteorites/comets. We also show some Exobiological implications particularly for the formations of amino acids in the ISM.
Identifer | oai:union.ndltd.org:theses.fr/2013AIXM4740 |
Date | 27 September 2013 |
Creators | Vinogradoff, Vassilissa |
Contributors | Aix-Marseille, Chiavassa, Thierry, Duvernay, Fabrice |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0028 seconds