This thesis is a result of research aimed at analysis of the Taylor Spatial Frames (TSF) in Orthopaedics. The TSF is a ring external fixator, which are used to stabilise a fracture or provide stability during skeletal limb reconstruction procedures. A sound understanding of the mechanics of the fixator is essential, because mechanical stability is a key factor in bone healing. TSF is in fact an adaptation of the hexapod parallel manipulators for dynamisation of the classical ring fixators of Ilizarov type. Therefore, a general solution for Forward kinematics of parallel manipulators was provided and the solution is visualised in real-time. A three-dimensional visualisation tool for TSF, was developed, which offers improvements over the software provided by the manufacturer. Abaqus/CAE programming interfaces were used to develop two separate systems for automatic creation of FEMs of the TSF: one using beam elements and the other using 3D solid elements. The systems were used for a parametric study on axial compression of the TSF. Components of the TSF were also tested and analysed: o TSF rings were studied extensively, which lead to revealing important facts about their role in the TSF. o Fixation bolts in external fixators were studied by FE technique and the results used to relate bolt-load to the bolt-torque applied. o TSF struts were tested in compression and their load-deflection behaviour and the role of universal joints in them were described. TSF and Ilizarov fixators were tested and compared in axial compression. The results highlighted the important role of the pins and wires in deflection of the fixators.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:734234 |
Date | January 2016 |
Creators | Zamani-Farahani, Ahmad |
Publisher | University of Manchester |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | https://www.research.manchester.ac.uk/portal/en/theses/analysis-of-tsf-and-ilizarov-ring-fixators-in-orthopaedics-by-finite-element-modelling-and-mechanical-testing(af1567c8-47f1-4897-9cb5-5a0b1948e726).html |
Page generated in 0.0084 seconds