Return to search

Diagnostics and Generalizations for Parametric State Estimation

This dissertation is comprised of a collection of five distinct research projects which apply, evaluate and extend common methods for land surface data assimilation. The introduction of novel diagnostics and extensions of existing algorithms is motivated by an example, related to estimating agricultural productivity, of failed application of current methods. We subsequently develop methods, based on Shannon's theory of communication, to quantify the contributions from all possible factors to the residual uncertainty in state estimates after data assimilation, and to measure the amount of information contained in observations which is lost due to erroneous assumptions in the assimilation algorithm. Additionally, we discuss an appropriate interpretation of Shannon information which allows us to measure the amount of information contained in a model, and use this interpretation to measure the amount of information introduced during data assimilation-based system identification. Finally, we propose a generalization of the ensemble Kalman filter designed to alleviate one of the primary assumptions - that the observation function is linear.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/293533
Date January 2013
CreatorsNearing, Grey Stephen
ContributorsGupta, Hoshin V., Ferré, Ty Paul A., Winter, C. Larry, Crow, Wade T., Gupta, Hoshin V.
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.002 seconds