This dissertation introduces work on face recognition using a novel technique based on Hidden Markov Models (HMMs). Through the integration of a priori structural knowledge with statistical information, HMMs can be used successfully to encode face features. The results reported are obtained using a database of images of 40 subjects, with 5 training images and 5 test images for each. It is shown how standard one-dimensional HMMs in the shape of top-bottom models can be parameterised, yielding successful recognition rates of up to around 85%. The insights gained from top-bottom models are extended to pseudo two-dimensional HMMs, which offer a better and more flexible model, that describes some of the twodimensional dependencies missed by the standard one-dimensional model. It is shown how pseudo two-dimensional HMMs can be implemented, yielding successful recognition rates of up to around 95%. The performance of the HMMs is compared with the Eigenface approach and various domain and resolution experiments are also carried out. Finally, the performance of the HMM is evaluated in a fully automated system, where database images are cropped automatically.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:319301 |
Date | January 1995 |
Creators | Samaria, Ferdinando Silvestro |
Publisher | University of Cambridge |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | https://www.repository.cam.ac.uk/handle/1810/244871 |
Page generated in 0.0019 seconds