Human activity analysis has attracted great interest from computer vision researchers due to its promising applications in many areas such as automated visual surveillance, computer-human interactions, and motion-based identification and diagnosis. This dissertation presents work in two areas: general human activity recognition from video, and human activity analysis for the purpose of identifying pathological gait from both 3D captured data and from video. Even though the research in human activity recognition has been going on for many years, still there are many issues that need more research. This includes the effective representation and modeling of human activities and the segmentation of sequences of continuous activities. In this thesis we present an algorithm that combines shape and motion features to represent human activities. In order to handle the activity recognition from any viewing angle we quantize the viewing direction and build a set of Hidden Markov Models (HMMs), where each model represents the activity from a given view. Finally, a voting based algorithm is used to segment and recognize a sequence of human activities from video. Our method of representing activities has good attributes and is suitable for both low resolution and high resolution video. The voting based algorithm performs the segmentation and recognition simultaneously. Experiments on two sets of video clips of different activities show that our method is effective. Our work on identifying pathological gait is based on the assumption of gait symmetry. Previous work on gait analysis measures the symmetry of gait based on Ground Reaction Force data, stance time, swing time or step length. Since the trajectories of the body parts contain information about the whole body movement, we measure the symmetry of the gait based on the trajectories of the body parts. Two algorithms, which can work with different data sources, are presented. The first algorithm works on 3D motion-captured data and the second works on video data. Both algorithms use support vector machine (SVM) for classification. Each of the two methods has three steps: the first step is data preparation, i.e., obtaining the trajectories of the body parts; the second step is gait representation based on a measure of gait symmetry; and the last step is SVM based classification. For 3D motion-captured data, a set of features based on Discrete Fourier Transform (DFT) is used to represent the gait. We demonstrate the accuracy of the classification by a set of experiments that shows that the method for 3D motion-captured data is highly effective. For video data, a model based tracking algorithm for human body parts is developed for preparing the data. Then, a symmetry measure that works on the sequence of 2D data, i.e. sequence of video frames, is derived to represent the gait. We performed experiments on both 2D projected data and real video data to examine this algorithm. The experimental results on 2D projected data showed that the presented algorithm is promising for identifying pathological gait from video. The experimental results on the real video data are not good as the results on 2D projected data. We believe that better results could be obtained if the accuracy of the tracking algorithm is improved.
Identifer | oai:union.ndltd.org:UMIAMI/oai:scholarlyrepository.miami.edu:oa_dissertations-1246 |
Date | 14 December 2007 |
Creators | Niu, Feng |
Publisher | Scholarly Repository |
Source Sets | University of Miami |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Open Access Dissertations |
Page generated in 0.0024 seconds