Return to search

Produ??o de enzimas lignocelulol?ticas e de bioetanol a partir de res?duos da palha de carna?ba (Copernicia prunifera) pr?-tratados

Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2018-03-21T11:51:42Z
No. of bitstreams: 1
FrancinaldoLeiteDaSilva_TESE.pdf: 3609009 bytes, checksum: 2c514bec8990f69a112dbf03fff72a30 (MD5) / Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2018-03-23T12:33:28Z (GMT) No. of bitstreams: 1
FrancinaldoLeiteDaSilva_TESE.pdf: 3609009 bytes, checksum: 2c514bec8990f69a112dbf03fff72a30 (MD5) / Made available in DSpace on 2018-03-23T12:33:28Z (GMT). No. of bitstreams: 1
FrancinaldoLeiteDaSilva_TESE.pdf: 3609009 bytes, checksum: 2c514bec8990f69a112dbf03fff72a30 (MD5)
Previous issue date: 2017-12-19 / Nativa do Brasil, a Carna?ba (Copernicia prunifera) tem sido utilizada para diversos fins, incluindo a produ??o de cera a partir de suas folhas, cujo processo gera uma quantidade consider?vel de res?duo, o qual se caracteriza como uma fibra rica em celulose e, portanto, com um potencial para uso como fonte de carbono para a produ??o de enzimas celulol?ticas e etanol. A estrutura qu?mica desse material apresenta a celulose ligada a componentes estruturalmente complexos, como a hemicelulose e a lignina, o que dificulta a produ??o das celulases por fungos filamentosos, bem como, a sua hidr?lise enzim?tica, sendo imprescind?vel a utiliza??o de um pr?-tratamento para a viabiliza??o desses processos. O presente estudo avaliou o efeito de diferentes pr?-tratamentos na palha de carna?ba para a produ??o de enzimas lignocelulol?ticas e para a hidr?lise enzim?tica com vistas ? produ??o de etanol celul?sico por meio dos conceitos de biorrefinaria e microdestilaria. Na primeira etapa deste trabalho, o res?duo da palha de carna?ba foi submetido aos pr?-tratamentos hidrot?rmico (HT), alcalino (AL), ?cido alcalino (AA) e per?xido de hidrog?nio alcalino (A-HP). Os res?duos pr?-tratados e n?o tratado foram caracterizados quimicamente conforme o protocolo da National Renewable Energy Laboratory (NREL) e, fisicamente, por meio das an?lises de Microscopia Eletr?nica de Varredura (MEV), Difra??o de Raio X (DRX) e Espectroscopia de Infravermelho Transformada de Fourier (FTIR). Uma parte de cada res?duo foi utilizada para produ??o de enzimas por meio de Fermenta??o em Estado S?lido (FES), utilizando o fungo Trichoderma reesei CCT-2768. As atividades FPAse, CMCase, ?-glicosidase e xilanase dos extratos foram estimadas e a produ??o posteriormente otimizada. A outra parte dos res?duos foi submetida ? Sacarifica??o e Simult?nea Fermenta??o (SSF) com enzimas comerciais, utilizando as leveduras Saccharomyces cerevisiae UFLA CA11, Saccharomyces cerevisiae CAT-1 e Kluyveromyces marxianus ATCC-36907. Os resultados dos pr?-tratamentos AL, AA e A-HP se destacaram em termos de remo??o de lignina, segundo as an?lises qu?mica e f?sica dos res?duos. Os estudos evidenciaram que o pr?-tratamento da palha da carna?ba com A-HP possui maior capacidade de indu??o da produ??o de enzimas lignocelulol?ticas ao se comparar com outros res?duos lignocelul?sicos, como coco, caju e cana-de-a??car, pr?-tratados pelo mesmo m?todo. A otimiza??o da produ??o de enzimas lignocelulol?ticas permitiu a produ??o de um extrato enzim?tico com atividade FPase de 2,4 U/g e xilanases de 172 U/g. A aplica??o do extrato enzim?tico na hidr?lise do baga?o de cana-de-a??car pr?-tratado mostrou efici?ncia de 86,96%. A hidr?lise enzim?tica, com enzimas comerciais, do res?duo da carna?ba submetido ao pr?-tratamento AL, apresentou a maior convers?o de a??cares (64,43%) e, ao ser submetido ? SSF, produziu 7,53 g/L de etanol, usando Kluyveromyces marxianus ATCC-36907 cultivada a 45 ?C. Os resultados evidenciam, portanto, o potencial biotecnol?gico do res?duo da carna?ba para a produ??o de enzimas celulol?ticas e na obten??o de bioetanol em um arranjo de biorrefinaria e microdestilaria. / Native to Brazil, Carnauba (Copernicia prunifera) has been used for several purposes, including the wax production from its leaves, in the process that generates a considerable amount of residue. This residue is characterized as a fiber rich in cellulose and therefore with potential latent for use as a source of carbon for the production of cellulolytic enzymes and bioethanol. However, the chemical structure of this material presents cellulose bound to structurally complex components, such as hemicellulose and lignin, which hinders the production of cellulases by filamentous fungi, as well as its enzymatic hydrolysis, being essential to use of a pre-treatment for the viability of these processes. The present study evaluated the effect of different pre-treatments on carnauba straw for the production of lignocellulolytic enzymes and for the enzymatic hydrolysis with a view to the production of cellulosic ethanol through the concepts of biorefinery and micro-distillery. In the first stage, carnauba straw residue was submitted to hydrothermal (HT), alkaline (AL), alkaline acid (AA) and alkaline hydrogen peroxide (A-HP) pre-treatments. The pretreated and untreated residues were chemically characterized according to the National Renewable Energy Laboratory (NREL) protocol and, physically, by Scanning Electron Microscopy (MEV), X-Ray Diffraction (XRD) and Spectroscopy of Infrared by Fourier Transform (FTIR). A part of each residue was used to produce enzymes by means of Solid State Fermentation (FES), using the fungus Trichoderma reesei CCT-2768. The FPAse, CMCase, ?-glycosidase and xylanase activities of the extracts were estimated and the production was subsequently optimized. The other part of the residues was subjected to Saccharification and Simultaneous Fermentation (SSF) using commercial enzymes and Saccharomyces cerevisiae UFLA CA11, Saccharomyces cerevisiae CAT-1 and Kluyveromyces marxianus ATCC-36907. The results of the pretreatments AL, AA and A-HP stood out in terms of the removal of lignin, according to the chemical and physical analysis of the residues. The studies showed that pretreatment of carnauba straw with A-HP has a higher capacity to induce the production of lignocellulolytic enzymes when compared to other residues, such as coconut, cashew apple and sugar cane, pretreated by the same method. The optimization of the production of lignocellulolytic enzymes allowed the production of an enzymatic extract with FPase activity of 2.4 U/g and xylanases of 172 U/g. The application of the enzymatic extract in the hydrolysis of pretreated sugarcane bagasse showed efficiency of 86.96%. The use of AL pretreated carnauba residue in enzymatic hydrolysis, with commercial enzymes, showed a higher conversion of sugars (64.43%) and, when submitted to SSF, produced 7.53 g/L of ethanol, using Kluyveromyces marxianus ATCC-36907 cultured at 45 ?C. The results showed, therefore, the biotechnological potential of the carnauba residue for the production of cellulolytic enzymes and the production of bioethanol by means of biorefinery and micro distillery.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.ufrn.br:123456789/24948
Date19 December 2017
CreatorsSilva, Francinaldo Leite da
Contributors87510383404, Sousa J?nior, Francisco Canind? de, 04925544470, Rocha, Maria Valderez Ponte, 64669335391, Ara?jo, Nathalia Kelly de, 01169410499, Franco, Telma Teixeira, 05559969800, Santos, Everaldo Silvino dos
PublisherPROGRAMA DE P?S-GRADUA??O EM BIOTECNOLOGIA, UFRN, Brasil
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Repositório Institucional da UFRN, instname:Universidade Federal do Rio Grande do Norte, instacron:UFRN
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0025 seconds