Return to search

Study of gas hydrate formation and wall deposition under multiphase flow conditions / Estudo da formação e deposição na parede de tubulações de hidratos de gás em escoamentos multifásicos

Os problemas de garantia de escoamento em tubulações de óleo e gás associados a hidratos de gás têm sido resolvidos tradicionalmente pela implementação de estratégias de “prevenção de hidratos”, ou seja, técnicas de remoção de água, isolamento e injeção de inibidores termodinâmicos. Para reduzir os custos de desenvolvimento e de operação na indústria, a técnica conhecida como “gestão de hidratos” vem se tornando uma alternativa viável. As estratégias de “gestão de hidratos” diferem da usual “prevenção de hidratos” uma vez que, ao invés de focarem na prevenção da formação de hidratos, tais estratégias objetivam minimizar o risco de obstrução e garantir o escoamento utilizando técnicas que permitem o transporte de suspensões de hidrato estáveis com o óleo produzido em condições de escoamento multifásico. A fim de implantar com segurança estratégias de gestão de hidratos, é necessário compreender mecanismos e processos ligados à formação e acumulação de hidrato em diferentes sistemas multifásicos, compostos por gás, óleo e água. Diversos experimentos objetivando aumentar o conhecimento dos diferentes processos resultando resultantes em condições de formação de bloqueio foram realizados. Utilizou-se uma célula de balanço com janela de visualização para mensurar e observar os vários estágios de formação, deposição e acumulação de hidratos em situações de mistura e movimento contínuos induzidos pela oscilação da célula. Os experimentos foram realizados em um cenário de gás limitado, considerando combinações de fluidos provenientes de uma mistura de gases v metano e etano, água e óleo mineral ou condensado como hidrocarboneto líquido. Os efeitos da adição de monoetilenoglicol (MEG) e um antiaglomerante modelo (AA) também foram estudados em alguns dos experimentos. Foram mensurados e observados vários estágios de formação e acumulo de hidratos com mistura contínua como um fator de várias variáveis (temperatura, pressão, presença de inibidores termodinâmicos e antiaglomerantes). Foram identificados fenômenos como deposição, desprendimento, crescimento de partículas de hidrato, aglomeração e formação de leito poroso. Neste trabalho, observou-se uma menor tendência de deposição em superfícies molhadas com óleo mineral, em comparação com as superfícies expostas ao condensado ou à fase gasosa. Contudo, a deposição de hidrato também foi observada no sistema de óleo, principalmente em superfícies expostas à fase gasosa. A formação de hidrato em um experimento com óleo mineral, 30% água de volume liquido e antiaglomerante resultou em suspensão de hidratos transportável. Tanto o condensado como o óleo mineral não eram emulsionantes, mas a dispersão, estabilizada por cisalhamento das fases líquidas, foi criada antes da formação de hidrato, através da mistura induzida pelo movimento da célula. A dispersão das fases de óleo e água parecia estar completamente separada durante o escoamento constante devido ao início da formação de hidrato. Uma análise da porosidade foi realizada com base na avaliação visual da aparência de hidratos em imagens capturadas a partir das gravações de vídeo dos experimentos e da quantidade calculada de fase hidrato no sistema. Os depósitos de hidrato com alta porosidade formam-se em condições com um alto gradiente de temperatura entre os líquidos e a superfície, e condições de sub-resfriamento elevadas, sofrendo então desprendimento devido à absorção de água, ao peso do depósito e ao cisalhamento dos fluidos sobre depósito. No entanto, a análise dos experimentos com água pura demonstrou que o desprendimento não foi detectado em uma limitada janela operacional, definida por ambos o sub-resfriamento inferior a 4° C e o gradiente de temperatura na célula inferior a 1° C. A existência em potencial de uma janela operacional vi para condições sem desprendimento pode ser valiosa para o desenvolvimento de estratégias de gestão de hidratos para a produção sem ocorrência de bloqueios. Esta tese correlaciona os fenômenos observados (tais como deposição, desprendimento, aglomeração, leito poroso) com parâmetros como sub-resfriamento, porosidade e tipo de hidrocarboneto líquido no sistema. Um modelo conceitual revisado para a formação e acumulação de hidratos em sistemas não emulsionantes, que inclui mecanismos de separação de fases, aglomeração e deposição, foi desenvolvido com base nos resultados dos experimentos. / Potential flow assurance problems in oil and gas pipelines related to gas hydrates have traditionally been resolved by implementing hydrate avoidance strategies, such as water removal, insulation, and injection of thermodynamic inhibitors. As a means of lowering development and operational costs in the industry, hydrate management is becoming a more viable approach. “Hydrate Management” strategies differ from standard “Hydrate Avoidance” in the fact that, instead of focusing on preventing hydrate formation, these strategies focus on minimizing the risk of plugging and ensuring flow using methods that allow transportability of hydrate slurries with the hydrocarbon production fluids in multiphase flow conditions where hydrates are stable. In order to safely implement hydrate management strategies, it is required to understand mechanisms and processes connected to hydrate formation and accumulation in different multiphase systems involving gas, oil and water. A number of experiments have been performed using a visual rocking cell to measure and observe the various stages of hydrate formation, deposition and accumulation during continuous mixing and motion induced by the oscillation of the rocking cell to increase insight into the different processes leading to hydrate plug conditions. The experiments were performed in a gas-limited scenario considering the fluid combinations consisting of methaneethane gas mixture, water and mineral oil or condensate as hydrocarbon liquid. The effects of ii added monoethylene glycol (MEG) and a model anti-agglomerant (AA) were also studied in some of the experiments. Various stages of hydrate formation and accumulation were measured and observed under continuous mixing, as a function of several variables: temperature, pressure, presence of thermodynamic inhibitors and anti-agglomerants. Phenomena such as deposition, sloughing, hydrate particle growth, agglomeration and bedding were identified. In this work, a lower tendency of the hydrate to deposit on mineral oil wetted surfaces was observed, as compared to surfaces exposed to the condensate or the gas phase. Nevertheless, hydrate deposition was also observed in the oil system, mainly at surfaces only exposed to the gas phase. Hydrate formation in an experiment with mineral oil, 30% water cut and anti-agglomerant resulted in transportable hydrate slurry. Both the condensate and mineral oil tested were non-emulsifying, but shear-stabilized dispersion of the liquid phases was created prior to hydrate formation by mixing induced by the motion of the cell. The dispersion of the oil and water phases appeared to completely phase-separate during constant flow due to the incipient hydrate formation. A porosity analysis was performed based on analysis of visual appearance of hydrates in images captured from the video recordings of the experiments and calculated amount of hydrate phase in the system. Highly porous hydrate deposits formed in conditions with a large temperature gradient between the bulk and the surface, and high subcooling conditions, then suffering from sloughing due to the wetting and weight of the deposit and the shear of the fluids on the deposit. However, analysis of the experiments with fresh water demonstrated that sloughing was not detected in a narrow operational window defined by both subcooling lower than 4 °C and temperature gradient in the cell lower than 1 °C. The potential existence of an operational window for conditions without sloughing might be valuable for development of hydrate management strategies for blockage-free production. iii This thesis presents relationships between the phenomena observed (such as deposition, sloughing, glomeration, bedding) and parameters, such as subcooling, porosity and type of liquid hydrocarbon in the system. A revised conceptual model for hydrate formation and accumulation in non-emulsifying systems, which includes phase separation, agglomeration and deposition related mechanisms, has been developed based on the results from the experiments.

Identiferoai:union.ndltd.org:IBICT/urn:repox.ist.utl.pt:RI_UTFPR:oai:repositorio.utfpr.edu.br:1/2846
Date05 May 2017
CreatorsStraume, Erlend Oddvin
ContributorsMorales, Rigoberto Eleazar Melgarejo, Morales, Rigoberto Eleazar Melgarejo, Barbosa Junior, Jader Riso, Camargo, Ricardo Marques de Toledo, Santos, Paulo Henrique Dias dos
PublisherUniversidade Tecnológica Federal do Paraná, Curitiba, Programa de Pós-Graduação em Engenharia Mecânica e de Materiais, UTFPR, Brasil
Source SetsIBICT Brazilian ETDs
LanguageEnglish
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Repositório Institucional da UTFPR, instname:Universidade Tecnológica Federal do Paraná, instacron:UTFPR
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0031 seconds