Return to search

The Effect of a High-Fat Diet on Bone Strain in Adult Rat Femurs

<p>A high-fat diet can adversely affect bone mechanical properties, but it is unknown how these changes affect bone adaptation. Bone adaptation occurs in response to strain-related mechanisms, and strain in the bone is affected by the size and mechanical properties of the bone.The purpose of this study was to compare the strain during loading in femurs from rats fed a high-fat (HF) or normal control (NC) diet. At 3 weeks of age, male and female Wistar rats were randomly assigned to receive a NC (NC–17% fat; N=8 per gender) or HF diet (HF–41% fat; N=8 per gender) until termination (39 weeks of age). Right femurs were loaded <em>ex vivo</em> in 3-point bending to physiologic levels and mechanical strain was measured. The mechanical properties of the left femurs were determined by 3-point bend tests to failure. The dietary effects were limited in both genders. Femoral cross-sectional area properties (bone area, moment of inertia), determined from µCT scans, were significantly greater in HF femurs vs. NC for males and females. Elastic modulus was calculated from strain and deformation data and no dietary effects were seen in either gender. At the applied loads, despite significantly larger cross-sectional area properties in the HF femurs, there was no significant difference in strain between HF and NC femurs for either gender. It appears that adaptive modeling occurs during growth in the HF bones to target a predetermined level of strain to preserve bone structural integrity.</p> / Master of Applied Science (MASc)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/11509
Date04 1900
CreatorsDruchok, Cheryl D.
ContributorsWohl, Gregory, Biomedical Engineering
Source SetsMcMaster University
Detected LanguageEnglish
Typethesis

Page generated in 0.0015 seconds