Return to search

Thermal Characteristics of High Power LED Cooling by Ultrasonic Micro-nozzle Plate Arrays

By focusing on the cooling requirement of high power LED, the study aims to explore the spray cooling method and analyze its cooling performance. The ultrasonic micro-nozzle plate made of piezoelectric ceramic material was used in this experiment in order to establish a spray cooling system. The nozzle plate array (3 ¡Ñ 2) was used to carry out a cooling test for 24 LEDs with high power (6 ¡Ñ 4). Three different watts (1 W, 3 W, 5 W) of LED were tested, the total input power was 24W, 72W and 120 W, respectively, and the working medium was DI water. The goal is to understand the variance in performance caused by nozzle plates of different nozzle diameters (dj = 7, 35 £gm) in varied nozzle distances (z = 10, 20, 30, 40, 50 mm). The experiment used thermocouples to measure the slug temperature of LED. By applying thermal resistnace to the LED to calculate its chip temperature, and using micrometer resolution particle image velocimetry (£gPIV) to observe the spray flowfield inside the LED chamber, this study analyzes the influence of flowfield change on cooling performance.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0821112-160000
Date21 August 2012
CreatorsWang, Meng-Lin
ContributorsChao-Kuang Chen, Shou-Shing Hsieh, Ching-Jenq Ho, Chin-Chia Su
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0821112-160000
Rightsuser_define, Copyright information available at source archive

Page generated in 0.0017 seconds