Return to search

A Multi-Modular Neutronically Coupled Power Generation System

The High Temperature Integrated Multi-Modular Thermal Reactor is a small modular reactor that uses an enhanced conductivity BeO-UO2 fuel with supercritical CO2 coolant to drive turbo-machinery in a direct Brayton cycle. The core consists of several self-contained pressurized modules, each containing fuel elements in pressurized channels surrounded by a graphite moderator, and Brayton cycle turbo-machinery. Each module is subcritical by itself, and when several modules are brought into proximity of one another, a single critical core is formed.

The multi-modular approach and use of BeO-UO2 fuel with graphite moderator and supercritical CO2 coolant leads to an inherently safe system capable of high efficiency operation. The pressure channel design and multi-modular approach eliminates engineering challenges associated with large pressure vessels. The subcriticality of the modules ensures inherent safety during construction, transportation, and after decommissioning.

Serpent, a continuous-energy Monte-Carlo reactor physics burnup calculation code, was used to develop a critical configuration of the subcritical modules using UO2 fuel enriched with 5 wt% 235U with a 5 wt% BeO additive. The core lifetime was found to be 14.6 years operating at 10 MWth, though the U enrichment and power can be altered to achieve desired core lifetimes. Negative fuel and moderator temperature coefficients of reactivity were found that could maintain safety during operation.

The multi-modular design was found to be beneficial compared to a core with all fuel elements in one module. Batch battery type refueling was found to be beneficial and the feasibility of controlling the reactor was demonstrated through the use of control shells that surround each module.

The HT-IMMTR design is an inherently safe, highly efficient, economically competitive, and most important, feasible reactor design that takes advantage of proven technologies to facilitate the demonstration of a successful commercial deployment.

Identiferoai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/ETD-TAMU-2012-05-10904
Date2012 May 1900
CreatorsPatel, Vishal
ContributorsTsvetkov, Pavel
Source SetsTexas A and M University
Languageen_US
Detected LanguageEnglish
Typethesis, text
Formatapplication/pdf

Page generated in 0.0024 seconds