Return to search

Measurement of the Brout-Englert-Higgs boson couplings in its diphoton decay channel with the ATLAS detector at the LHC

After the Higgs boson discovery in the first LHC data, the focus is now on its properties measurement. Among these properties, its couplings are of particular importance since any deviation from the expected value can be an indication of new physics, beyond the Standard Model. This thesis is oriented towards the Higgs couplings measurements with the ATLAS experiment, using the diphoton decay channel. Selected diphoton events are classified into different categories to disentangle the five Higgs production modes by tagging the objects produced in association with the Higgs boson: two jets for the VBF production mode, lepton and missing transverse energy for the higgsstrahlung (WH and ZH), b-jets for ttH, the remaining events being mostly produced via the dominant production mode ggH. The impact of the Higgs pT modelling in the ggH production mode is also investigated. Theoretical developments provide predictions of the pT shape at NNLO+NNLL accuracy, including top and bottom mass effects in the loop up to NLO+NLL, implemented in the HRes program. A reweighting technique to take into account these latest theoretical improvements is derived, taking into consideration the correlation with the number of jets. Its impact on the final measurement is estimated to be of the order of a few percent. The final couplings results, measured at the Higgs mass obtained by the combination of the H->gamma gamma and H->ZZ*->4l channels in ATLAS (mH = 125.4 +/- 0.4 GeV) do not show any statistically significant deviation from the Standard Model. The observed signal strength mu = sigma^{obs} / sigma^{exp} is found to be: mu = 1.17^{+0.28}_{-0.25} = 1.17 +/- 0.23(stat) ^{+0.10}_{-0.08}(syst) ^{+0.12}_{-0.08}(theory). The ratio of the observed number of events in each production mode to the expected ones are measured at: mu_ggH = 1.32 +/- 0.32(stat.) ^{+0.13}_{-0.09}(syst.) ^{+0.19}_{-0.11}(theory) ; mu_VBF = 0.8 +/- 0.7(stat.) ^{+0.2}_{-0.1}(syst.) ^{+0.2}_{-0.3}(theory) ; mu_WH = 1.0 +/- 1.5(stat.) ^{+0.3}_{-0.1}(syst.) ^{+0.2}_{-0.1}(theory) ; mu_ZH = 0.1 ^{+3.6}_{-0.1}(stat.) ^{+0.7}_{-0.0}(syst.) ^{+0.1}_{-0.0}(theory) ; mu_ttH = 1.6 ^{+2.6}_{-1.8}(stat.) ^{+0.6}_{-0.4}(syst.} ^{+0.5}_{-0.2}(theory)

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-01064955
Date11 July 2014
CreatorsScifo, Estelle
PublisherUniversité Paris Sud - Paris XI
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0019 seconds