High entropy alloys (HEAs) or complex concentrated alloys (CCAs) represent a new paradigm in structural alloy design. Molten salt corrosion behavior was studied for single-phase HEAs such as TaTiVWZr and HfTaTiVZr, and multi-phase HEAs such as AlCoCrFeNi2.1. De-alloying with porosity formation along the exposed surface and fluxing of unstable oxides were found to be primary corrosion mechanisms. Potentiodynamic polarization study was combined with systematic mass–loss study for TaTiVWZr, HfTaTiVZr, and AlCoCrFeNi2.1 as a function of temperature. Electrochemical impedance spectroscopy (EIS) was used for monitoring the corrosion of TaTiVWZr and HfTaTiVZr in molten fluoride salt at 650 oC. TaTiVWZr and AlCoCrFeNi2.1 showed low corrosion rate in the range of 5.5-7.5 mm/year and low mass-loss in the range of 35-40 mg/cm2 in molten chloride salt at 650 oC. Both TaTiVWZr and HfTaTiVZr showed similar mass loss in the range of 31-33 mg/cm2, which was slightly higher than IN 718 (~ 28 mg/cm2) in molten fluoride salt at 650 oC. Ta-W rich dendrite region in TaTiVWZr showed higher corrosion resistance against dissolution of alloying elements in the molten salt environment. AlCoCrFeNi2.1 showed higher resistance to galvanic corrosion compared to Duplex steel 2205 in molten chloride salt environment. These results suggest the potential use of HEAs/CCAs as structural materials in the molten salt environment for concentrating solar power and nuclear reactor systems.
Identifer | oai:union.ndltd.org:unt.edu/info:ark/67531/metadc1944333 |
Date | 05 1900 |
Creators | Patel, Kunjalkumar Babubhai |
Contributors | Mukherjee, Sundeep, Reidy, Rick, Aouadi, Samir, Du, Jincheng, Nasrazadani, Seifollah |
Publisher | University of North Texas |
Source Sets | University of North Texas |
Language | English |
Detected Language | English |
Type | Thesis or Dissertation |
Format | Text |
Rights | Public, Patel, Kunjalkumar Babubhai, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved. |
Page generated in 0.002 seconds