Return to search

Resource placement, data rearrangement, and Hamiltonian cycles in torus networks

Many parallel machines, both commercial and experimental, have been/are being designed with toroidal interconnection networks. For a given number of nodes, the torus has a relatively larger diameter, but better cost/performance tradeoffs, such as higher channel bandwidth, and lower node degree, when compared to the hypercube. Thus, the torus is becoming a popular topology for the interconnection network of a high performance parallel computers.
In a multicomputer, the resources, such as I/O devices or software packages, are distributed over the networks. The first part of the thesis investigates efficient methods of distributing resources in a torus network. Three classes of placement methods are studied. They are (1) distant-t placement problem: in this case, any non-resource node is at a distance of at most t from some resource nodes, (2) j-adjacency problem: here, a non-resource node is adjacent to at least j resource nodes, and (3) generalized placement problem: a non-resource node must be a distance of at most t from at least j resource nodes.
This resource placement technique can be applied to allocating spare processors to provide fault-tolerance in the case of the processor failures. Some efficient
spare processor placement methods and reconfiguration schemes in the case of processor failures are also described.
In a torus based parallel system, some algorithms give best performance if the data are distributed to processors numbered in Cartesian order; in some other cases, it is better to distribute the data to processors numbered in Gray code order. Since the placement patterns may be changed dynamically, it is essential to find efficient methods of rearranging the data from Gray code order to Cartesian order and vice versa. In the second part of the thesis, some efficient methods for data transfer from Cartesian order to radix order and vice versa are developed.
The last part of the thesis gives results on generating edge disjoint Hamiltonian cycles in k-ary n-cubes, hypercubes, and 2D tori. These edge disjoint cycles are quite useful for many communication algorithms. / Graduation date: 1997

Identiferoai:union.ndltd.org:ORGSU/oai:ir.library.oregonstate.edu:1957/34129
Date14 November 1996
CreatorsBae, Myung Mun
ContributorsBose, Bella
Source SetsOregon State University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation

Page generated in 0.0019 seconds