The implementation of scientific inquiry in the high school classroom has proven to be not only relevant and exploratory, but challenging and engaging as well. This style of curriculum design has been recognized as a primary means of achieving the goals and objectives set by the National Resource Council (NRC, 1996). While much research has shown that science inquiry helps students to gain understanding of content knowledge, little research has been conducted to assess gains in higher order thinking skills, specifically those related to data analysis (Anderson, 2002; Germann and Aram, 1996; Hofstein, Navon, Kipnis, and Mamlok-Naaman, 2005; Miner, Levy, and Century, 2009; Windschitl, Thompson, and Braaten, 2008; Zohar and Dori, 2003). Through a better understanding of the scientific inquiry process as well as insights into students' struggles with data analysis, we can better understand how to effectively implement strategies in the classroom that encourage the higher order thinking skill of data analysis. This mixed methods, multiple-case study investigated teacher practice in eight high school science inquiry units in the Portland, Oregon metropolitan area and the data analyses that students produced in their accompanying work samples. The results of this study indicate that students struggle to produce proficient analysis and interpretations of data. The areas of student struggle were in the areas that required higher order thinking: analyzing results, drawing conclusions, and communicating results. Furthermore, this research discusses areas of data analysis instruction that may benefit from professional development opportunities.
Identifer | oai:union.ndltd.org:pdx.edu/oai:pdxscholar.library.pdx.edu:open_access_etds-2533 |
Date | 13 December 2013 |
Creators | Baker-Lawrence, Anika Rae |
Publisher | PDXScholar |
Source Sets | Portland State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Dissertations and Theses |
Page generated in 0.0022 seconds