Return to search

Reducing jitter utilising adaptive pre-emphasis FIR filter for high speed serial links

Jitter requirements have become more stringent with higher speed serial communication links. Reducing jitter, with the main focus on reducing data dependant jitter (DDJ), is presented by employing adaptive finite impulse response (FIR) filter pre-emphasis. The adaptive FIR pre-emphasis is implemented in the IBM 7WL 0.18 µm SiGe BiCMOS process. SiGe heterojunction bipolar transistors (HBTs) provide high bandwidth, low noise devices which could reduce the total system jitter. The trade-offs between utilising metal oxide semiconductor (MOS) current mode logic (CML) and SiGe bipolar CML are also discussed in comparison with a very high fT (IBM 8HP process with fT = 200 GHz) process. A reduction in total system jitter can be achieved by keeping the sub-components of the system jitter constant while optimising the DDJ. High speed CML circuits have been employed to allow data rates in excess of 5 Gb/s to be transmitted whilst still maintaining an internal voltage swing of at least 300 mV. This allows the final FIR filter adaptation scheme to minimise the DDJ within 12.5 % of a unit interval, at a data rate of 5 Gb/s implementing 6 FIR pre-emphasis filter taps, for a worst case copper backplane channel (30" FR-4 channel). The implemented integrated circuit (IC) designed as part of the verification process takes up less than 1 mm2 of silicon real estate. In this dissertation, SPICE simulation results are presented, as well as the novel IC implementation of the proposed FIR filter adaptation technique as part of the hypothesis verification procedure. The implemented transmitter and receiver were tested for functionality, and showed the successful functional behaviour of all the implemented CML gates associated with the first filter tap. However, due to the slow charge and discharge rate of the pulse generation circuit in both the transmitter and receiver, only the main operational state of the transmitter could be experimentally validated. As a result of the adaptation scheme implemented, the contribution in this research lies in that a designer utilising such an IC can optimise the DDJ, reducing the total system jitter, and hence increasing the data fidelity with minimal effort. / Dissertation (MEng)--University of Pretoria, 2011. / Electrical, Electronic and Computer Engineering / unrestricted

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:up/oai:repository.up.ac.za:2263/28712
Date14 February 2011
CreatorsGoosen, Marius Eugene
ContributorsSinha, Saurabh, marius.goosen@up.ac.za
PublisherUniversity of Pretoria
Source SetsSouth African National ETD Portal
Detected LanguageEnglish
TypeDissertation
Rights© 2011 University of Pretoria. All rights reserved. The copyright in this work vests in the University of Pretoria. No part of this work may be reproduced or transmitted in any form or by any means, without the prior written permission of the University of Pretoria.

Page generated in 0.0027 seconds