Return to search

Modelling the degradation processes in high-impact polystyrene during the first use and subsequent recycling

<p>Polymers are subjected to physical and chemical changes during their processing, service life, and further recovery, and they may also interact with impurities that can alter their composition. These changes substantially modify the stabilisation mechanisms and mechanical properties of recycled polymers. Detailed knowledge about how the different stages of their life cycle affect the degree of degradation of polymeric materials is important when discussing their further waste recovery possibilities and the performance of recycled plastics. A dual-pronged experimental approach employing multiple processing and thermo-oxidation has been proposed to model the life cycle of recycled high-impact polystyrene (HIPS). Both reprocessing and thermo-oxidative degradation are responsible for coexistent physical and chemical effects (chain scission, crosslinking, apparition of oxidative moieties, polymeric chain rearrangements, and physical ageing) on the microstructure and morphology of polybutadiene (PB) and polystyrene (PS) phases; these effects ultimately influence the long-term stability, and the rheological and mechanical behaviour of HIPS. The PB phase has proved to be the initiation point of HIPS degradation throughout the life cycle. Thermo-oxidation seems to have more severe effects on HIPS properties; therefore, it can be concluded that previous service life may be the part of the life cycle with the greatest influence on the recycling possibilities and performance of HIPS recyclates in second-market applications. The results from the life cycle degradation simulation were compared with those obtained from real samples from a large-scale mechanical recycling plant. A combination of different analytical strategies (thermal analysis, vibrational spectroscopy, and chromatographic analysis) is necessary to obtain a detailed understanding of the quality of recycled HIPS as defined by three key properties: degree of mixing, degree of degradation, and presence of low molecular weight compounds.</p>

Identiferoai:union.ndltd.org:UPSALLA/oai:DiVA.org:kth-4407
Date January 2007
CreatorsVilaplana, Francisco
PublisherKTH, Fibre and Polymer Technology, Stockholm : Fiber- och polymerteknologi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, text
RelationTrita-CHE-Report, 1654-1081 ; 2007:30

Page generated in 0.0026 seconds