Return to search

Evaluation d’une filière technologique de cellules photovoltaïques multi-jonctions à base de matériaux antimoniures (III-V)-Sb pour applications aux très fortes concentrations solaires / Evaluation of a technological process of photovoltaic cells multi-junction based antimonide materials (III-V)-Sb for use under highly concentrated solar flux

La conversion photovoltaïque (PV) de l’énergie solaire repose sur la capacité qu’ont certains matériaux à convertir l’énergie des photons en courant électrique. Le développement des systèmes de conversion PV ces trente dernières années a permis des améliorations considérables en terme de coût et de performances dans le domaine des énergies renouvelables.Une cellule multi-jonctions (MJ), à base de matériaux semi-conducteurs III-V, est un empilement de sous-cellules aux gaps décroissants qui permet notamment une plus large utilisation du spectre solaire. Soumettre ces cellules PV à un flux solaire concentré permet d’augmenter significativement la puissance électrique créée par celles-ci, et ainsi d’abaisser substantiellement le coût de l’électricité produite.Le record du monde est actuellement détenu par le partenariat Soitec / Fraunhofer ISE avec un rendement de 46,0 % mesuré sur une cellule quadruple-jonctions en GaInP/GaAs//InGaAsP/InGaAs pour un taux de concentration de 508 X (où 1 X =1 soleil = 1 kW/m²).L’objectif du travail réalisé dans le cadre de cette thèse est de proposer une alternative aux cellules existantes plus simple à mettre en œuvre avec des cellules MJ monolithiques accordées sur substrat de GaSb pour des concentrations solaire de 1 000, soit une irradiance directe de 1 MW/m². Ce type de cellules, du fait de la très bonne complémentarité des gaps des matériaux et ses alignements de bandes favorables, constitue une alternative crédible et originale aux cellules existantes pour une utilisation sous flux solaire fortement concentré.Afin de mieux comprendre la cellule multijonctions III-Sb optimale, les travaux réalisés ont porté sur la fabrication et la caractérisation des trois sous-cellules fabriquées indépendamment. Ces trois échantillons épitaxiés sont l’Al0,9Ga0,1As0,07Sb0,93 (cellule Top), l’Al0,35Ga0,65As0,03Sb0,97 (cellule Middle) et le GaSb (cellule Bottom) ayant comme gaps respectifs 1,6 eV, 1,22 eV et 0,726 eV à 300 K.Le travail présenté dans cette thèse porte sur :- La réalisation et la mise au point de toutes les étapes technologiques nécessaires à la fabrication des cellules (dépôts métalliques, gravure humide et sèche par plasma …).- La caractérisation des métallisations par structure TLM (Transmission Line Method) dont le meilleur résultat obtenu concerne une métallisation tri-couche Cr/Pd/Au (30/30/30 nm) sur substrat GaSb type P.- La caractérisation sous obscurité courant-tension des paramètres électriques des cellules PV à température ambiante et en fonction de la température.- La caractérisation thermique par mesure de la conductivité thermique des matériaux et une cartographie de température de surface en fonction du flux solaire concentré en conditions réelles.- La caractérisation électro-optique par réponse spectrale, à partir de laquelle nous avons calculé le rendement quantique externe qui représente le rapport entre la quantité d’électrons créés et la quantité de photons incidente.- La caractérisation sous illumination à 1 soleil (1 000 W/m²) sous simulateur solaire et en conditions solaire dont nous avons comparé les paramètres électriques.- La caractérisation des cellules sous flux solaire (fortement) concentré au laboratoire PROMES. Les meilleurs rendements obtenus pour les cellules PV Bottom, Middle et Top respectifs de 4,6 % à 40 X (proche de l’état de l’art), 8,2 % à 96 X et 5,4 % à 185 X (première mondiale pour ces matériaux quaternaires).Ce travail a été cofinancé par le Ministère de l’Education et de la Recherche (Allocation ED) et le Labex SOLSTICE.Photovoltaic (PV) solar energy consists on the ability of certain materials to convert the photon energy into electric current. The development of PV conversion systems in the past thirty years has led to considerable improvements in terms of cost and performance in the field of renewable energies. / Photovoltaic (PV) solar energy consists on the ability of certain materials to convert the photon energy into electric current. The development of PV conversion systems in the past thirty years has led to considerable improvements in terms of cost and performance in the field of renewable energies.A multi-junction (MJ) cell, based on III-V semiconductor materials, is a stack of sub-cells with decreasing gaps which notably allows wider use of the solar spectrum. Exposing these PV cells to a concentrated solar flux can significantly increase the electrical power generated, and therefore substantially lower the cost of electricity yielded.The world record is currently held by the partnership Soitec / Fraunhofer ISE with an efficiency of 46.0 % measured on a four-junction cell GaInP/GaAs//InGaAsP/InGaAs for a concentration ratio of 508 X (where 1 X = 1 sun = 1 kW/m²).The objective of the work in this thesis is to propose an alternative to existing cells, easier to implement with monolithic MJ cells grown on a GaSb substrate for solar concentrations of 1 000, which corresponds to a direct irradiance of 1 MW/m². This type of cell, due to the good complementary of the material gaps and its favorable band alignments, is a realistic and original alternative to existing cells for use under highly concentrated solar flux.To better understand the optimal multijunction III-Sb cell, the work carried out consisted on the manufacturing and characterization of the three sub-cells independently.These three epitaxial samples are Al0,9Ga0,1As0,07Sb0,93 (Top cell), the Al0,35Ga0,65As0,03Sb0,97 (Middle cell) and GaSb (Bottom cell) having as respective gaps 1.6 eV, 1.22 eV and 0.726 eV at 300 K.The work presented in this thesis is:- The establishment of all the technological steps required to manufacture the cells (metal deposition, wet and dry plasma etching ...).- The characterization of metallization by TLM structure (Transmission Line Method) with the best result being a three-layer metallization Cr/Pd/Au (30/30/30 nm) on a GaSb P-type substrate.- The characterization under dark of current-voltage electrical parameters of PV cells at room temperature and in function of the temperature.- The thermal characterization by measuring the thermal conductivity of the materials and a surface temperature mapping in function of the concentrated solar flux in realistic conditions.- The electro-optical characterization by spectral response, from which we calculated the external quantum efficiency which is the ratio between the amount of electrons created and the amount of incident photons.- The characterization under 1 sun illumination (1 000 W/m²) in a solar simulator and in realistic conditions of which we compared the electrical parameters.- The characterization of solar cells under (highly) concentrated solar flux in the PROMES laboratory.The best efficiencies for Bottom, Middle and Top PV cells respectively are 4.6 % for 40 X (close to the state of the art), 8.2 % for 96 X and 5.4 % for 185 X (world first for these quaternary materials).This work was cofounded by the Ministry of Education and Research (ED Research grant) and Labex SOLSTICE.

Identiferoai:union.ndltd.org:theses.fr/2016MONTT330
Date20 June 2016
CreatorsGiudicelli, Emmanuel
ContributorsMontpellier, Sagnes, Bruno
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0037 seconds