In general we know that the fixed point locus of a 1-dimensional additive linear algebraic
group,G_{a}, action over a complete nonsingular variety is connected. In thesis, we explicitly
identify a subset of the G_{a}-fixed locus of the punctual Hilbert scheme of the d points,Hilb^{d}(P^{2} / 0),in
P^{2}. In particular we give an other proof of the fact that Hilb^{d}(P^{2} / 0) is connected.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12613165/index.pdf |
Date | 01 March 2011 |
Creators | Ozkan, Engin |
Contributors | Akyildiz, Ersan |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | Ph.D. Thesis |
Format | text/pdf |
Rights | To liberate the content for METU campus |
Page generated in 0.002 seconds