Return to search

Fixed Point Scheme Of The Hilbert Scheme Under A 1-dimensional Additive Algebraic Group Action

In general we know that the fixed point locus of a 1-dimensional additive linear algebraic
group,G_{a}, action over a complete nonsingular variety is connected. In thesis, we explicitly
identify a subset of the G_{a}-fixed locus of the punctual Hilbert scheme of the d points,Hilb^{d}(P^{2} / 0),in
P^{2}. In particular we give an other proof of the fact that Hilb^{d}(P^{2} / 0) is connected.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12613165/index.pdf
Date01 March 2011
CreatorsOzkan, Engin
ContributorsAkyildiz, Ersan
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypePh.D. Thesis
Formattext/pdf
RightsTo liberate the content for METU campus

Page generated in 0.002 seconds