Return to search

ASSESSMENT OF HIP FRACTURE RISK IN OLDER ADULTS BY CONSIDERING THE EFFECT OF GEOMETRY AND BONE MINERAL DENSITY DISTRIBUTION IN THE FEMUR USING SINGLE DUAL-ENERGY X-RAY ABSORPTIOMETRY SCANS / ASSESSMENT OF HIP FRACTURE RISK IN OLDER ADULTS

Hip fractures in older adults have severe effects on patients’ morbidity as well as mortality, so it is crucial to avoid this injury through the early identification of patients at high risk. Currently, the diagnosis of osteoporosis and consequently hip fracture risk is done through the measurement of bone mineral density by a dual-energy X-ray absorptiometry (DXA) scan. However, studies show that this method is not accurate enough, and a high percentage of patients who sustain a hip fracture had non-osteoporotic DXA scans less than a year before the incidence.
In this research, to enhance the hip fracture risk prediction, the effect of a femur’s geometry and bone mineral density distribution was considered in the hip fracture risk estimation. This was done through 2D and 3D statistical shape and appearance modeling of the proximal femur using standard clinical DXA scans. To assess the proposed techniques, destructive mechanical tests were performed on 16 isolated cadaveric femurs. Also, through collaboration with the Canadian Osteoporosis Study (CaMos), the proposed statistical techniques to predict the hip fracture risk were evaluated in a clinical population as well.
The results of this study showed that new techniques can enhance hip fracture risk estimation; in the clinical study, 2D and 3D statistical modeling were able to improve identifying patients at high risk by 40% and 44% over the clinical standard method. Also, the percentage of correct predictions using 2D statistical models did not differ significantly from the 3D predictions. Therefore, by applying these techniques in clinical practice it could be possible to identify patients at high risk of sustaining a hip fracture more accurately and eventually reduce the incidence of hip fractures and the pain and social and economic burden that comes with it. / Thesis / Doctor of Philosophy (PhD) / Diagnosis of osteoporosis and consequently hip fracture risk is based on the measurement of bone mineral density in clinical imaging called DXA scanning. However, studies have shown that this method is not sufficient in identifying all patients at high risk of sustaining a hip fracture.
The purpose of this work was to incorporate the geometry and bone mineral density distribution of the proximal femur in hip fracture risk prediction through image processing of DXA scans. Two algorithms of 2D and 3D statistical shape and appearance modeling were implemented and evaluated in a cadaveric study (comparing the predicted fracture load to measured ones) as well as a clinical study (comparing the fracture predictions to the fracture history of patients).
The results indicated that new techniques can enhance hip fracture risk estimation compared to the clinical standard method, and hence the devastating injury can be prevented through applying protective measures.

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/25781
Date January 2020
CreatorsJAZINIZADEH, FATEMEH
ContributorsQUENNEVILLE, CHERYL, Mechanical Engineering
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0018 seconds