Return to search

THE EFFECT OF NICOTINE CO-ADMINISTRATION ON ALCOHOL-INDUCED REACTIVE HIPPOCAMPAL CELL PROLIFERATION DURING ABSTINENCE IN AN ADOLESCENT MODEL OF AN ALCOHOL USE DISORDER

A significant consequence of alcohol use disorders (AUDs) is hippocampal neurodegeneration. The hippocampus is responsible for learning and memory, and neurodegeneration in this brain region has been shown to result in cognitive deficits. Interestingly, some alcoholics demonstrate improvements in hippocampus-dependent functions, potentially due the phenomenon termed adult neurogenesis. Adult neurogenesis, the process by which neural stem cells (NSCs) proliferate, differentiate into neurons, migrate into the granule cell layer, and survive, occurs in two brain regions; however, this study examines only neurogenesis occurring in the subgranular zone of the hippocampal dentate gyrus. Four-day binge ethanol exposure in an animal model causes a decrease in neurogenesis during intoxication; however, there is a reactive increase in cell proliferation on day seven of abstinence. The purpose of this study was to determine the timing of increased cell proliferation. Furthermore, most alcoholics also smoke tobacco, and nicotine, the addictive component of tobacco, has also been shown to affect hippocampal neurogenesis. As many people initiate alcohol and tobacco use during adolescence, the second experiment herein examined the effect of nicotine coadministration on alcohol-induced reactive hippocampal cell proliferation.

Identiferoai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:pharmacy_etds-1058
Date01 January 2016
CreatorsHeath, Megan
PublisherUKnowledge
Source SetsUniversity of Kentucky
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations--Pharmacy

Page generated in 0.0016 seconds