Return to search

Overcoming frataxin gene silencing in Friedreich's ataxia with small molecules: studies on cellular and animal models

Friedreich’s ataxia (FRDA) is an inherited recessive disorder characterized by progressive neurological disability and heart disease. It is caused by a pathological intronic hyperexpansion of a GAA repeat in the FXN gene, encoding the essential mitochondrial protein frataxin. At the homozygous state, the GAA expansion induces a heterochromatin state with decreased histone acetylation and increased methylation, resulting in a partial deficiency of frataxin expression. This was established in cells from FRDA patients. We showed that the same chromatin changes exist in a GAA based mouse model, KIKI, generated in our laboratory. Furthermore, treatment of KIKI mice with a novel Histone Deacetylase Inhibitor (HDACi), 106, a pimelic diphenylamide that increases frataxin levels in FRDA cell culture, restored frataxin levels in the nervous system and heart of KIKI mice and induced histone hyperacetylation near the GAA repeat. As shown by microarrays, most of the differentially expressed genes in KIKI were corrected towards wild type. In an effort to improve the pharmacological profile of compound 106, we synthesized more compounds based on its structure and specificity. We characterized two of these compounds in FRDA patients’ peripheral blood lymphocytes and in the KIKI mouse model. We observed a sustained frataxin upregulation in both systems, and, by following the time course of the events, we concluded that the effects of these compounds last longer than the time of direct exposure to HDACi. Our results support the pre-clinical development of a therapeutic approach based on pimelic diphenylamide HDACis for FRDA. Laboratory tools to follow disease progression and assess drug efficacy are needed in a slowly progressive neurodegenerative disease such as FRDA. We used microarrays to characterize the gene expression profile in peripheral lymphocytes from FRDA patients, carriers and controls. We identified gene expression changes in heterozygous, clinically unaffected GAA expansion carriers, suggesting that they present a biochemical phenotype, consistent with data from animal models of frataxin deficiency. We identified a subset of genes changing in patients as a result of pathological frataxin deficiency establishing robust gene expression changes in peripheral lymphocytes. These changes can be used as a biomarker to monitor disease progression and potentially assess drug efficacy. To this end, we used he same methodology to characterize the gene expression profiles in peripheral lymphocytes after treatment with pimelic diphenylamide HDACi. This treatment had relevant effects on gene expression on peripheral patients’ blood lymphocytes. It increased frataxin levels in a dose-dependent manner, and partially rescued the gene expression phenotype associated with frataxin deficiency in the tested cell model, thus providing the first application of a biomarker gene set in FRDA. / Doctorat en sciences biomédicales / info:eu-repo/semantics/nonPublished

Identiferoai:union.ndltd.org:ulb.ac.be/oai:dipot.ulb.ac.be:2013/210180
Date05 January 2010
CreatorsRai, Myriam
ContributorsPandolfo, Massimo, Lebrun, Philippe, Abramowicz, Marc, Festenstein, Richard, Koenig, Michel, Fuks, François, Dan, Bernard
PublisherUniversite Libre de Bruxelles, Université libre de Bruxelles, Faculté de Médecine – Sciences biomédicales, Bruxelles
Source SetsUniversité libre de Bruxelles
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis, info:ulb-repo/semantics/doctoralThesis, info:ulb-repo/semantics/openurl/vlink-dissertation
Format1 v., No full-text files

Page generated in 0.002 seconds