As all genres of popular music, classical music consists of many different subgenres. The aim of this work is to recognize those subgenres from orchestral recordings. It is focused on the time period from the very end of 16th century to the beginning of 20th century, which means that Baroque era, Classical era and Romantic era are researched. The Music Information Retrieval (MIR) method was used to classify chosen subgenres. In the first phase of MIR method, parameters were extracted from musical recordings and were evaluated. Only the best parameters were used as input data for machine learning classifiers, to be specific: kNN (K-Nearest Neighbor), LDA (Linear Discriminant Analysis), GMM (Gaussian Mixture Models) and SVM (Support Vector Machines). In the final chapter, all the best results are summarized. According to the results, there is significant difference between the Baroque era and the other researched eras. This significant difference led to better identification of the Baroque era recordings. On the contrary, Classical era ended up to be relatively similar to Romantic era and therefore all classifiers had less success in identification of recordings from this era. The results are in line with music theory and characteristics of chosen musical eras.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:413256 |
Date | January 2020 |
Creators | Jelínková, Jana |
Contributors | Zvončák, Vojtěch, Kiska, Tomáš |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0017 seconds