Résumé : La détection des bâtiments dans les images à très haute résolution spatiale (THRS) a plusieurs applications pratiques et représente un domaine de recherche scientifique intensive ces dernières années. Elle fait face à la complexité du milieu urbain et aux spécificités des images provenant des différents capteurs. La performance des méthodes existantes pour l’extraction des bâtiments n’est pas encore suffisante pour qu’elles soient généralisées à grande échelle (différents types de tissus urbains et capteurs).
Les opérateurs morphologiques se sont montrés efficaces pour la détection des bâtiments dans les images panchromatiques (images en niveaux de gris) à très haute résolution spectrale (THRS). L’information spectrale issue des images multispectrales est jugée nécessaire pour l’amélioration de leur performance. L’extension des opérateurs morphologiques pour les images multispectrales exige l’adoption d’une stratégie qui permet le traitement des pixels sous forme de vecteurs, dont les composantes sont les valeurs dans les différentes bandes spectrales.
Ce travail de recherche vise l’application de la transformation morphologique dite Hit-or-Miss (HMT) à des images multispectrales à THRS, afin de détecter des bâtiments. Pour répondre à la problématique de l’extension des opérateurs morphologiques pour les images multispectrales, nous proposons deux solutions. Comme une première solution nous avons généré des images en niveaux de gris à partir les bandes multispectrales. Dans ces nouvelles images les bâtiments potentiels sont rehaussés par rapport à l’arrière-plan. La HMT en niveaux de gris est alors appliquée à ces images afin de détecter les bâtiments. Pour rehausser les bâtiments nous avons proposé un nouvel indice, que nous avons appelé Spectral Similarity Ratio (SSR). Pour éviter de définir des configurations, des ensembles d’éléments structurants (ES), nécessaires pour l’application de la HMT, au préalable, nous avons utilisé l’érosion et la dilatation floues et poursuivi la réponse des pixels aux différentes valeurs des ES. La méthode est testée sur des extraits d’images représentant des quartiers de type résidentiel. Le taux moyen de reconnaissance obtenu pour les deux capteurs Ikonos et GeoEye est de 85 % et de 80 %, respectivement. Le taux moyen de bonne identification, quant à lui, est de 85 % et 84 % pour les images Ikonos et GeoEye, respectivement. Après certaines améliorations, la méthode a été appliquée sur des larges scènes Ikonos et WorldView-2, couvrant différents tissus urbains. Le taux moyen des bâtiments reconnus est de 82 %. Pour sa part, le taux de bonne identification est de 81 %.
Dans la deuxième solution, nous adoptons une stratégie vectorielle pour appliquer la HMT directement sur les images multispectrales. La taille des ES de cette transformation morphologique est définie en utilisant la transformation dite chapeau haut-de-forme par reconstruction. Une étape de post-traitement inclut le filtrage de la végétation par l’indice de la végétation NDVI et la validation de la localisation des bâtiments par l’information d’ombre. La méthode est appliquée sur un espace urbain de type résidentiel. Des extraits d’images provenant des capteurs satellitaires Ikonos, GeoEye et WorldView 2 ont été traités. Le taux des bâtiments reconnus est relativement élevé pour tous les extraits - entre 85 % et 97 %. Le taux de bonne identification démontre des résultats entre 74 % et 88 %.
Les résultats obtenus nous permettent de conclure que les objectifs de ce travail de recherche, à savoir, la proposition d’une technique pour l’estimation de la similarité spectrale entre les pixels formant le toit d’un bâtiment, l’intégration de l’information multispectrale dans la HMT dans le but de détecter les bâtiments, et la proposition d’une technique qui permet la définition semi-automatique des configurations bâtiment/voisinage dans les images multispectrales, ont été atteints. // Abstract :
Detection of buildings in very high spatial resolution images (THRS) has various practical
applications and is recently a subject of intensive scientific research. It faces the complexity of the urban environment and the variety of image characteristics depending on the type of the sensor. The performance of existing building extraction methods is not yet sufficient to be generalized to a large scale (different urban patterns and sensors).
Morphological operators have been proven effective for the detection of buildings in panchromatic (greyscale) very high spectral resolution (VHSR) images. The spectral information of multispectral images is jugged efficient to improve the results of the detection. The extension of morphological operators to multispectral images is not straightforward. As pixels of multispectral images are pixels vectors the components of which are the intensity values in the different bands, a strategy to order vectors must be adopted.
This research thesis focuses on the application of the morphological transformation called Hit-or-Miss (HMT) on multispectral VHSR images in order to detect buildings. To address the issue of the extension of morphological operators to multispectral images we have proposed two solutions. The first one employs generation of greyscale images from multispectral bands, where potential buildings are enhanced. The grayscale HMT is then applied to these images in order to detect buildings. To enhance potential building locations we have proposed the use of Spectral Similarity Ratio (SSR). To avoid the need to set multiple configurations of structuring elements (SE) necessary for the implementation of the HMT, we have used fuzzy erosion and fuzzy dilation and examined the pixel response to different values of SE. The method has been tested on image subsets taken over residential areas. The average rate of recognition for the two sensors, Ikonos and GeoEye, is 85% and 80%, respectively. The average rate of correct identification is 85% and 84%, for Ikonos and GeoEye subsets, respectively. Having made some improvements, we then applied the method to large scenes from Ikonos and WorldView-2 images covering different urban patterns. The average rate of recognized buildings is 82%. The rate of correct identification is 81%.
As a second solution, we have proposed a new vector based strategy which allows the multispectral information to be integrated into the percent occupancy HMT (POHMT). Thus, the POHMT has been directly applied on multispectral images. The parameters for the POHMT have been defined using the morphological transformation dubbed top hat by reconstruction. A post-processing step included filtering the vegetation and validating building locations by proximity to shadow. The method has been applied to urban residential areas. Image subsets from Ikonos, GeoEye and WorldView2 have
been processed. The rate of recognized buildings is relatively high for all subsets - between 85% and 97%. The rate of correct identification is between 74 % and 88 %.
The results allow us to conclude that the objectives of this research, namely, suggesting a technique for estimating the spectral similarity between the pixels forming the roof of a building, the integration of multispectral information in the HMT in order to detect buildings and the proposition of a semiautomatic technique for the definition of the configurations building/neighbourhood in multispectral images, have been achieved.
Identifer | oai:union.ndltd.org:usherbrooke.ca/oai:savoirs.usherbrooke.ca:11143/108 |
Date | January 2014 |
Creators | Stankov, Katia |
Contributors | He, Dong-Chen |
Publisher | Université de Sherbrooke |
Source Sets | Université de Sherbrooke |
Language | French |
Detected Language | French |
Type | Thèse |
Rights | © Katia Stankov |
Page generated in 0.0029 seconds