Return to search

Analysis and Applications of the Heterogeneous Multiscale Methods for Multiscale Elliptic and Hyperbolic Partial Differential Equations

This thesis concerns the applications and analysis of the Heterogeneous Multiscale methods (HMM) for Multiscale Elliptic and Hyperbolic Partial Differential Equations. We have gathered the main contributions in two papers. The first paper deals with the cell-boundary error which is present in multi-scale algorithms for elliptic homogenization problems. Typical multi-scale methods have two essential components: a macro and a micro model. The micro model is used to upscale parameter values which are missing in the macro model. Solving the micro model requires, on the other hand, imposing boundary conditions on the boundary of the microscopic domain. Imposing a naive boundary condition leads to $O(\varepsilon/\eta)$ error in the computation, where $\varepsilon$ is the size of the microscopic variations in the media and $\eta$ is the size of the micro-domain. Until now, strategies were proposed to improve the convergence rate up to fourth-order in $\varepsilon/\eta$ at best. However, the removal of this error in multi-scale algorithms still remains an important open problem. In this paper, we present an approach with a time-dependent model which is general in terms of dimension. With this approach we are able to obtain $O((\varepsilon/\eta)^q)$ and $O((\varepsilon/\eta)^q  + \eta^p)$ convergence rates in periodic and locally-periodic media respectively, where $p,q$ can be chosen arbitrarily large.      In the second paper, we analyze a multi-scale method developed under the Heterogeneous Multi-Scale Methods (HMM) framework for numerical approximation of wave propagation problems in periodic media. In particular, we are interested in the long time $O(\varepsilon^{-2})$ wave propagation. In the method, the microscopic model uses the macro solutions as initial data. In short-time wave propagation problems a linear interpolant of the macro variables can be used as the initial data for the micro-model. However, in long-time multi-scale wave problems the linear data does not suffice and one has to use a third-degree interpolant of the coarse data to capture the $O(1)$ dispersive effects apperaing in the long time. In this paper, we prove that through using an initial data consistent with the current macro state, HMM captures this dispersive effects up to any desired order of accuracy in terms of $\varepsilon/\eta$. We use two new ideas, namely quasi-polynomial solutions of periodic problems and local time averages of solutions of periodic hyperbolic PDEs. As a byproduct, these ideas naturally reveal the role of consistency for high accuracy approximation of homogenized quantities. / <p>QC 20130926</p>

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-129237
Date January 2013
CreatorsArjmand, Doghonay
PublisherKTH, Numerisk analys, NA, Stockholm
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTrita-NA, 0348-2952 ; 13:02

Page generated in 0.0026 seconds