Return to search

Elektrisch‐thermisches Betriebs‐ und Langzeitverhalten hochstromtragfähiger Kontaktelemente

In Geräten und Anlagen des Stromnetzes werden Steckverbinder mit hoher Stromtragfähigkeit eingesetzt, wenn bewegliche Teile kontaktiert werden oder Betriebsmittel mit geringem Aufwand montier- und demontierbar sein müssen. Die elektrische Verbindung der Leiter wird dabei oft mit federnden Kontaktelementen realisiert. Die Kontaktelemente müssen als Teil der Strombahn während der Lebensdauer des Geräts den Betriebsstrom im Kiloampere-Bereich und im Fehlerfall bis zu einige Sekunden lang den eine Größenordnung höheren Kurzschlussstrom tragen. In der vorliegenden Arbeit wurden Rechenmodelle für die innere Erwärmung von Hochstrom-Kontaktsystemen im stationären Dauerbetrieb und im transienten Kurzschlussfall entwickelt. Das elektrische und mechanische Langzeitverhalten im Temperaturbereich (105…180) °C wurde experimentell mit stromdurchflossenen, fettgeschmierten Modellsteckverbindern, die regelmäßig getrennt und neu gesteckt wurden, untersucht. Modellerstellung, Rechnungen und Versuche wurden beispielhaft mit Kontaktelementen vom Typ Multilam durchgeführt. Kontaktelemente und Leiter bestanden aus versilbertem Kupfer.

Für das stationäre Betriebsverhalten wurden die mit der analytischen Spannungs-Temperatur-Beziehung nach Kohlrausch berechneten Ergebnisse mit einem Erwärmungsversuch verifiziert. Die Temperaturdifferenz zwischen Kontaktelement und Leiter ist bei Standardanwendungen, wie in Schaltanlagen, mit ≤ 3 K sehr klein. Deshalb ist die Leitertemperatur als Zielgröße beim Dimensionieren der Dauerstrombelastbarkeit ausreichend. Bei Kurzschlussstrombelastung wurde im Kontaktsystem eine schnelle, räumlich unterschiedlich ausgeprägte Erwärmung numerisch berechnet. Leiter und Kontaktelement erwärmen sich kontinuierlich, wobei die mittlere Endübertemperatur im Kontaktelement aufgrund des kleineren stromtragenden Querschnitts eine Größenordnung höher ist. Die Kontakte führen bei 50 Hz-Wechselstrom aufgrund ihrer vernachlässigbaren Wärmekapazität 100 Hz-Temperaturzyklen aus. Dabei können die Maximaltemperaturen noch deutlich größer als die mittlere Temperatur der Kontaktelemente sein.

Im Langzeitversuch waren nach 16 000 h Betriebszeit bei 180 °C und regelmäßigen simulierten Steckvorgängen die Verbindungskräfte noch genügend groß, um die elektrischen Anforderungen eines neuen Kontaktsystems zu erfüllen. Allerdings führte bei einer Betriebstemperatur von 105 °C ein thermisch instabiles Schmierfett zum vorzeitigen elektrischen Ausfall eines Teils der Steckverbinder.:Einleitung
Hochstrom-Kontaktsysteme – Stand der Technik
Theorie der Kontakte bei hoher Strombelastung
Stationäres elektrisch-thermisches Betriebsverhalten
Transientes elektrisch-thermisches Betriebsverhalten
Langzeitverhalten
Zusammenfassung
Ausblick / Switchgear and devices for the power grid use high-power connectors if moving parts have to be contacted or equipment shall be easily mountable and dismountable. The electrical connection of the conductors is often realized by spring-loaded contact elements. As part of the main circuit, contact elements must carry the full operating current in the kiloampere-range for the entire service life of the device. In case of a fault, the short-circuit current, which is one order of magnitude larger, has to be carried for up to several seconds. In this thesis, calculation models for the inner temperature rise of high-power contact systems in steady-state continuous operation, as well as for the transient short-circuit load case were developed. Electrical and mechanical long-term performance in the temperature range from 105 to 180 °C was experimentally investigated with current carrying, grease-lubricated model connectors which were regularly unplugged and replugged. Modelling, calculations and experiments were exemplarily carried out with Multilam contact elements. Conductors and contact element consisted of silver-plated copper.

The analytical voltage-temperature relation was used to calculate the steady-state performance; calculations were verified with a temperature-rise test. The temperature difference from contact element to conductors is very small (≤ 3 K) for standard applications like switchgear. Thus, it is sufficient to use the conductor temperature as a criterion for the design of the continuous ampacity of high-power contact systems. At short-time load, a fast spatially inhomogeneous temperature rise was numerically calculated. Conductor and contact element continuously heat up; due to the smaller current carrying cross section, median final temperature rise in the contact element is one order of magnitude larger than in the conductors. Because of their negligible thermal capacity, contacts perform 100 Hz temperature cycles at 50 Hz AC load; the maximum contact temperatures may be significantly higher than the median temperature of the contact elements.

In the long-term test, after 16 000 h operating time at 180 °C and regular plugging operations, contact elements maintained enough joint force to meet the requirements of a new contact system. At 105 °C however, a thermally instable grease led to electrical failure of part of the connectors.:Einleitung
Hochstrom-Kontaktsysteme – Stand der Technik
Theorie der Kontakte bei hoher Strombelastung
Stationäres elektrisch-thermisches Betriebsverhalten
Transientes elektrisch-thermisches Betriebsverhalten
Langzeitverhalten
Zusammenfassung
Ausblick

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:30045
Date12 January 2017
CreatorsGatzsche, Michael
ContributorsLücke, Nils, Großmann, Steffen, Song, Jian, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageGerman
Detected LanguageGerman
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0021 seconds