This thesis presents the results of high supply (up to 84 bar) pressure testing of hole-pattern annular gas seals performed at the Texas A & M Turbomachinery Laboratory in College Station, TX. The test variables were chosen to determine the influence of pressure ratio, rotor speed, and negative preswirl on seal performance. Preswirl signifies the circumferential fluid flow entering a seal, and negative preswirl indicates a fluid swirl in the direction opposite of rotor rotation.
Changes in pressure ratio had only small effects on most rotordynamic coefficients. Cross-coupled stiffness showed slightly different profiles through the mid-range of excitation frequencies. Pressure ratio showed some influence on direct and cross-coupled damping at low excitation frequencies.
Rotor speed significantly affected both cross-coupled stiffness and cross-coupled damping. As rotor speed increased, the magnitude of cross-coupled rotordynamic coefficients increased due to the positive fluid swirl induced by rotor rotation. For the low rotor speed, negative inlet preswirl was able to overpower the positive rotor induced fluid rotation, producing a negative cross-coupled stiffness. This outcome showed that, for hole-pattern seals, positive fluid swirl does indeed produce positive cross-coupled stiffness coefficients and negative fluid swirl produces negative cross-coupled stiffness coefficients.
The addition of negative preswirl greatly reduced cross-coupled rotordynamic coefficients, while direct rotordynamic terms were unaffected.
Cross-over frequency signifies the excitation frequency where effective damping transitions from a negative value to a positive value with increasing excitation frequency. Peak effective damping was increased by 50 percent and cross-over frequency reduced by 50 percent for high-negative preswirl versus zero preswirl results. This led to the conclusion that a reverse swirl could greatly enhance the stability of hole-pattern balance piston seals.
A two-control-volume model that uses the ideal gas law at constant temperature (ISOT) was used to predict rotordynamic coefficients and leakage. This model predicted direct rotordynamic coefficients well, but greatly under predicted cross-coupled rotordynamic coefficients especially at high negative preswirls. The model predicted seal leakage well at low pressure ratios, but showed increasing error as the pressure ratio was increased. These results showed that the prediction model could not adequately estimate cross-coupled rotordynamic coefficients for a hole-pattern seal with negative inlet preswirl and requires modification to do so.
Identifer | oai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/ETD-TAMU-2011-08-9747 |
Date | 2011 August 1900 |
Creators | Brown, Philip David |
Contributors | Childs, Dara W. |
Source Sets | Texas A and M University |
Language | en_US |
Detected Language | English |
Type | thesis, text |
Format | application/pdf |
Page generated in 0.0022 seconds