Return to search

Novel Pervaporation for Separating Acetic Acid and Water Mixtures Using Hollow Fiber Membranes

Commercial pure terephthalic acid (PTA) manufacturing generates process streams mainly containing acetic acid (HAc) and water. A large financial incentive exists to replace the costly and energy intensive distillation column used to recycle HAc-water mixtures. This work focuses on the development of pervaporation technology to separate HAc-water mixtures using a hollow fiber-based membrane unit.

Currently a 250 m outer diameter Matrimid® hollow fiber is used in industry for gas separation. Due to the difference between gas and liquid separations, the fiber performance associated with high flux in pervaporation is limited by a pressure change inside the bore along the axial direction of the fiber. A mathematical model was developed to describe the bore pressure change in pervaporation in this work, which demonstrated that spinning a large bore size fiber was a good solution to minimize the bore pressure change.

Spinning technology has been adapted to obtain a large bore size defect-free Matrimid® hollow fiber. In addition to a large bore size, the asymmetric fiber exhibits an intrinsically defect-free selective layer supported on an open porous substrate. This eliminates the post-treatment with a caulking layer and has a special advantage for aggressive liquid separation.

A proof of concept was provided by testing both small and large bore size defect-free fibers with a model 20% wt HAc feed in a pervaporation system at 101.5oC. The membrane selectivity (~ 25) and water flux (~ 4.5 kg/m2hr) were increased by about 150% with a diameter (O.D. ~ 500 m) twice as large as the regular fiber. Further, a decrease in the HAc flux was observed with the increased bore size due to the reduction in HAc-induced plasticization.

Sub-Tg thermal annealing was used to stabilize the fiber by suppressing HAc-induced plasticization. This improves the polymer discrimination of shape and size for penetrants although no chemical reaction occurs with thermal annealing. The resulting membrane selectivity was increased from 10 to about 95 using a large bore size defect-free annealed fiber with acceptable water flux (~ 1.5 kg/m2hr) for 20% wt HAc concentration feed streams.

These improvements make Matrimid® hollow fiber membranes very attractive for future scale-up and commercial development.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/7154
Date27 June 2005
CreatorsZhou, Fangbin
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeDissertation
Format1494970 bytes, application/pdf

Page generated in 0.0027 seconds