Return to search

Effect of shear, elongation and phase separation in hollow fiber membrane spinning

The spinning process of hollow fiber membranes was investigated with regards to two fundamental phenomena: flow (shear and elongation) and phase separation. Quantitative analysis of phase separation kinetics of binary (polymer/solvent) and ternary (polymer/solvent/volatile co-solvent) polymer solution was carried out with a newly developed microfluidic device. The device enables visualization of in situ phase separation and structure formation in controlled vapor and liquid environments. Results from these studies indicated that there was a weak correlation between phase separation kinetics and macroscopic defect (macrovoid) formation. In addition, the effect of shear and elongation on membrane morphology was tested by performing fiber extrusion through microfluidic channels. It was found that the membrane morphology is dominated by different factors depending on the rate of deformation. At high shear rates typical of spinning processes, shear was found to induce macrovoid formation through normal stresses, while elongation suppressed macroscopic defect formation. Furthermore, draw resonance, one of the key instabilities that can occur during fiber spinning, was investigated. It was found that draw resonance occurs at aggressive elongation condition, and could be suppressed by enhanced phase separation kinetics. These results can be used as guidelines for predicting hollow fiber membrane spinnability.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/53992
Date21 September 2015
CreatorsOh, Kyung Hee
ContributorsBreedveld, Victor
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeDissertation
Formatapplication/pdf

Page generated in 0.0023 seconds